SUMMARY REPORT FOR THE TORCH LAKE AREA ASSESSMENT TORCH LAKE NPL SITE AND SURROUNDING AREAS KEWEENAW PENINSULA, MICHIGAN

Prepared for:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region V Emergency Response Branch 9311 Groh Road Gross Ile, Michigan 48138

Prepared by:

WESTON SOLUTIONS, INC.

2501 Jolly Road, Suite 100 Okemos, Michigan 48864

Date Prepared December 13, 2007

TDD Number S05-0002-0708-020

Contract Number EP-S5-06-04

Document Control Number 274-2A-ABDT

START Project Manager Daniel M. Capone

Telephone No. (906) 482-3085

U.S. EPA On-Scene Coordinator Brian Kelly

SUMMARY REPORT FOR THE TORCH LAKE AREA ASSESSMENT TORCH LAKE NPL SITE AND SURROUNDING AREAS KEWEENAW PENINSULA, MICHIGAN

Prepared for:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region V Emergency Response Branch 9311 Groh Road Gross IIe, Michigan 48138

Prepared by:

WESTON SOLUTIONS, INC.

2501 Jolly Road, Suite 100 Okemos, Michigan 48864

December 13, 2007

Prepared by Jeffrey S. Binkley
Project Manager

Reviewed & Approved by Daniel M. Capone
START Project Manager

EXECUTIVE SUMMARY

Weston Solutions, Inc. (WESTON_®) has prepared this Summary Report to describe the September 2007 Torch Lake Area Assessment (AA) at the request of the United States Environmental Protection Agency (U.S. EPA), under the Superfund Technical Assessment and Response Team (START) contract between WESTON and the U.S. EPA (Contract No. EP-S5-06-04).

Study Area

The focus of the AA was on 17 Areas of Investigation (AOI) identified jointly by U.S. EPA and the Michigan Department of Environmental Quality (MDEQ) that were impacted by historical copper mining operations in the Keweenaw Peninsula. The AA included portions of the Torch Lake National Priorities List (NPL) Site where stamp sands are the primary media of concern. The AOIs are depicted on **Figure 1**.

Study Objectives

The primary objective of the Torch Lake AA was to evaluate imminent threats to human health, welfare and the environment, along with identification of areas for additional investigation. The specific geographical locations and exposure pathways evaluated during the AA were:

- Direct-contact hazards associated with newly-exposed stamp sand and the potential
 presence of other mining-era related waste along the western shoreline of Torch Lake as a
 result of significantly lower surface-water levels. The area evaluated was the recently
 exposed shoreline between the edge of the U.S. EPA-installed vegetative cover and the
 waters edge as a result of the significantly lower surface-water levels in Lake Superior
 and its contiguous water bodies. These previously shallow water areas had not been
 investigated;
- Direct-contact hazards associated with exposed stamp sand and the potential presence of other mining-era related waste near Gay, Michigan where no remedial efforts have been implemented; and
- Limited evaluation of potential environmental concerns at abandoned mining-era related industrial buildings, ruins, and land areas proximal to the western shoreline of Torch Lake, the shoreline of Lake Superior, and the north side of the Portage Waterway between the Quincy Smelter and H&Y Marina.

WESTON START conducted field tasks including performing visual assessments and documentation of conditions at each AOI, screening soils for metals content by x-ray fluorescence, sampling soils for laboratory analysis, and using global positioning system equipment to log and map targeted locations/media to meet the primary objective as further described in **Section 2**.

Findings

Comprehensive assessments were not in the scope of the AA, and therefore, lead paint, structural stability, physical hazards and other common environmental hazards known to affect historical industrial properties and structures are not included in this report unless suspected materials were readily apparent during reconnaissance or documented through previous studies. Suspect asbestos-containing material (ACM) encountered during reconnaissance or documented through previous studies is noted in the key findings. A complete summary of AA findings is provided in **Section 3**.

Findings at one or more AOI included dilapidated structures and exposed foundation materials and debris, documented and suspect friable ACM and other suspect hazardous building materials, exposed stamp sand and slag, miscellaneous items (including, but not limited to drums, cylinders, aboveground storage tanks, and surface debris), a tar vault and exposed stamp sand and tar along the Portage Waterway shoreline, and underwater drums presumed to be associated with the historical industrial operations surrounding Torch Lake.

Recommendations

Recommendations for further investigation, remedial action, or no further action are provided in **Section 4** for each AOI. The purpose of the Torch Lake AA was to determine if imminent and substantial threats existed and to make recommendations on further assessment. A comprehensive assessment of all environmental hazards known to affect historical industrial properties and structures was not within the scope of the AA. Furthermore, it should be noted that many of the potential environmental issues have been evaluated previously by the MDEQ and the U.S. EPA Remedial Branch.

TABLE OF CONTENTS

Section	P	Page
EXECUTIVE	SUMMARY	1
TABLE OF CO	ONTENTS	i
LIST OF FIGU	JRES	iv
LIST OF TAB	LES	v
LIST OF ATT.	ACHMENTS	v
SECTION 1 IN	NTRODUCTION	1
1.1 SITE	E LOCATION	1
1.2 SITE	E HISTORY	1
	JECT OBJECTIVE	
	COPE OF WORK REVIEW	
2.1 TAS	K 1 – PRE-ASSESSMENT ACTIVITIES	5
2.2 TAS	K 2 – AA ACTIVITIES	5
2.2.1	Targeted AOIs	6
2.2.2	Soil Screening Using XRF	7
	Soil and Exposed Sediment Sampling	
	Waste Sampling	
	K 3 – SAMPLE AND DATA MANAGEMENT ACTIVITIES	
	REA ASSESSMENT RESULTS	
	7 – QUINCY SMELTER	
	Site Description.	
	Review of Existing Site Information	
	15 – PROPERTIES ADJACENT TO QUINCY SMELTER	
	Site Description.	
	Review of Existing Site Information	
	Summary of Field Activities	
	Summary of XRF Results	
	Summary of Laboratory Results	
	16 – DOLLAR BAY WIRE MILL	
	Site Description	
	Review of Existing Site Information	
	17 – DOLLAR BAY WELL FIELD	
	Site Description	
	Review of Existing Site Information	
3.4.3	Summary of Field Activities	
	Summary of XRF Results	
	Summary of Laboratory Results	
	10 – MASON SANDS	
	Site Description	
	Review of Existing Site Information	
	Summary of Field Activities	
3.5.4	Summary of XRF Results	. 24

TABLE OF CONTENTS

	3.5.5	Summary of Laboratory Results	24
3.	6 AOI	18 – BUILDING IN MASON	. 25
	3.6.1	Site Description	. 25
	3.6.2	Review of Existing Site Information	26
	3.6.3	Summary of Field Activities	
	3.6.4	Summary of XRF Results	26
	3.6.5	Summary of Laboratory Results	26
3.	7 AOI	19 - FORMER C&H LEACH PLANT AND HUBBELL STAMP SANDS	26
	3.7.1	Site Description	26
	3.7.2	Review of Existing Site Information	. 27
	3.7.3	Summary of Field Activity	
	3.7.4	Summary of XRF Results	. 27
	3.7.5	Summary of Laboratory Results	. 27
3.	8 AOI	20 – TAMARACK CITY STAMP MILL	. 28
	3.8.1	Site Description	
		Review of Existing Site Information	
3.9	9 AOI	21 – HUBBELL BEACH AND SLAG DUMP	30
	3.9.1	Site Description	30
	3.9.2	Review of Existing Site Information	
	3.9.3	Summary of Field Activities	
	3.9.4	Summary of XRF Results	31
	3.9.5	Summary of Laboratory Results	
3.	10 AOI	22 – HUBBELL DOCKS, MINERAL BUILDING, AND C&H SMELTER	. 31
	3.10.1	Site Description	
	3.10.2	Review of Existing Site Information	. 32
	3.10.3	Summary of Field Activities	
	3.10.4	Summary of XRF Results	
	3.10.5	Summary of Laboratory Results	
3.	11 AOI	12 – LAKE LINDEN SANDS	. 37
	3.11.1	Site Description	
	3.11.2	Review of Existing Site Information	
	3.11.3	Summary of Field Activities	
	3.11.4	Summary of XRF Results	
	3.11.5	Summary of Laboratory Results	
3.		23 – C&H POWER PLANT	
	3.12.1	Site Description	
	3.12.2	Review of Existing Site Information	
	3.12.3	Summary of Field Activities	
	3.12.4	Summary of XRF Results	
	3.12.5	Summary of Laboratory Results	
3.		24 – BACKWATER AREA OF TORCH LAKE	
	3.13.1	Site Description	
	3.13.2	Review of Existing Site Information	
	3.13.3	Summary of Field Activities	
	3.13.4	Summary of XRF Results	
	3.13.5	Summary of Laboratory Results	44

TABLE OF CONTENTS

3.14 AO	OI 25 – TRAPROCK SLAG DUMP	. 45
3.14.1	Site Description	. 45
3.14.2	Review of Existing Site Information	. 45
3.14.3	Summary of Field Activities	. 45
3.14.4	Summary of XRF Results	. 46
3.14.5	Summary of Laboratory Results	. 46
3.15 AO	OI 26 – BOOTJACK STAMP SANDS	. 46
3.15.1	Site Description	. 46
3.15.2	Review of Existing Site Information	. 46
3.15.3	Summary of Field Activities	. 46
3.15.4	Summary of XRF Results	. 47
3.15.5	Summary of Laboratory Results	. 47
3.16 AO	OI 14 – GAY STAMP SANDS	. 47
3.16.1	Site Description	. 47
3.16.2	Review of Existing Site Information	. 48
3.16.3	Summary of Field Activities	. 49
3.16.4	Summary of XRF Results	
3.16.5	Summary of Laboratory Results	
3.17 WE	ESTERN SHORELINE OF TORCH LAKE	. 51
3.17.1	Site Description	. 51
3.17.2	Review of Existing Site Information	
3.17.3	Summary of Field Activities	
3.18 AO	OI 27 – DRUMS ON LAKE BOTTOM	
3.18.1	Site Description	
3.18.2	Review of Existing Site Information	
SECTION 4	FINDINGS AND RECOMMENDATIONS	. 55
SECTION 5	REFERENCES	. 60

LIST OF FIGURES

Title

Figure 1	Site Location/Area of Investigation Layout Map
Figure 2a	AOI Nos. 7 and 15 – Site Features and XRF Locations
Figure 2b	AOI Nos. 7 and 15 – RDCC Exceedances in Soil
Figure 3a	AOI Nos. 16 and 17 – Site Features and XRF Locations
Figure 3b	AOI Nos. 16 and 17 – RDCC Exceedances in Soil
Figure 4a	AOI Nos. 10 and 18 – Site Features and XRF Locations
Figure 4b	AOI Nos. 10 and 18 – RDCC Exceedances in Soil
Figure 5a	AOI No. 19 – Site Features and XRF Locations
Figure 5b	AOI No. 19 – RDCC Exceedances in Soil
Figure 6	AOI Nos. 20 and 21 – Site Features and XRF Locations
Figure 7a	AOI No. 22 – Site Features and XRF Locations
Figure 7b	AOI No. 22 – RDCC Exceedances in Soil
Figure 8a	AOI Nos. 12 and 23 – Site Features and XRF Locations
Figure 8b	AOI Nos. 12 and 23 – RDCC Exceedances in Soil
Figure 9a	AOI Nos. 24, 25 and 26 – Site Features and XRF Locations
Figure 9b	AOI Nos. 24, 25 and 26 – RDCC Exceedances in Soil
Figure 10a	AOI No. 14 – Site Features and XRF Locations
Figure 10b	AOI No. 14 (Entrance) – RDCC Exceedances in Soil
Figure 10c	AOI No. 14 (Shoreline) – RDCC Exceedances in Soil

LIST OF TABLES

<u>Title</u>

Table 1	AOI 15 XRF Screening and Laboratory Analytical Results
Table 2	PCB Sampling Results
Table 3	Summary of Select Analytical Results for MGP-Tar Sample
Table 4	AOI 17 XRF Screening Results
Table 5	AOI 10 XRF Screening and Laboratory Analytical Results
Table 6	AOI 19 XRF Screening and Laboratory Analytical Results
Table 7	AOI 21 XRF Screening Results
Table 8	AOI 22 XRF Screening and Laboratory Analytical Results
Table 9	AOI 12 XRF Screening and Laboratory Analytical Results
Table 10	AOI 23 XRF Screening Results
Table 11	AOI 24 XRF Screening and Laboratory Analytical Results
Table 12	AOI 25 XRF Screening and Laboratory Analytical Results
Table 13	AOI 26 XRF Screening Results
Table 14	AOI 14 XRF Screening and Laboratory Analytical Results

LIST OF ATTACHMENTS

Title

Attachment A	Site Access Summary Table
Attachment B	Photo Log
Attachment C	Analytical Data and Validation Report
Attachment D	Former C&H Leach Plant, MDEQ Sampling Locations and Results that
	Exceed RDCC
Attachment E	Lake Linden U.S. EPA Emergency Response Data

SECTION 1 INTRODUCTION

On August 24, 2007, the United States Environmental Protection Agency (U.S. EPA) initiated an area assessment (AA) at select areas of the Torch Lake National Priorities List (Torch Lake NPL) Site along the western shoreline of Torch Lake, the northern shoreline of the Portage Waterway, the western shoreline of Torch Lake, and the exposed shoreline of the Gay Stamp Sands deposit. The purpose of this AA was to identify potential imminent threats to human health, welfare, and the environment, along with identification of areas for additional investigation. U.S. EPA tasked the Weston Solutions, Inc. (WESTON®) Superfund Technical Assessment and Response Team (START) to perform the AA under START Contract No. EP-S5-06-04, Technical Direction Document (TDD) No. S05-0002-0708-020.

1.1 SITE LOCATION

The Portage Waterway and Torch Lake are located proximal to Hancock, Houghton County, Michigan (**Figure 1**). Gay, Michigan is located approximately 14 miles northeast of Torch Lake, on the shores of Lake Superior. The assessment study area encompasses Areas of Investigation (AOI) that include buildings, structures, five miles of exposed stamp sand shoreline along the western margin of Torch Lake, and five miles of stamp sand shoreline along Lake Superior near the town of Gay, Michigan. Targeted areas are presented in **Section 2**, and depicted on **Figure 1**.

1.2 <u>SITE HISTORY</u>

Copper mining occurred in the Keweenaw Peninsula from the 1890s until 1969. Mill tailings (stamp sands) were deposited in and along the shorelines of multiple lakes. Some industry is present in the area, but the primary business and commerce in the area today centers around recreation and tourism. Approximately 4,000 people live within one mile of Torch Lake.

About 200 million tons of copper mill stamp sands were dumped into Torch Lake, filling about 20 percent (%) of the lake, by volume. The contaminated sediments are believed to be 70 feet thick in some areas, and surface sediments contain copper concentration up to 2,000 parts per million (ppm). The stamp sands deposited in Torch Lake and along the shoreline were dredged during the early part of the 1900s. Flotation and leaching chemicals were used in some instances

1

to reclaim copper. The stamp sands and much of the flotation chemicals were returned to the lake bed and deposited along the shoreline. In addition to the mined copper, copper-containing materials from other areas were reclaimed. Other wastes were also historically deposited in and along the shoreline of Torch Lake, including mine pumpage, leaching chemicals, explosives residues, and mining byproducts. In 1972, an estimated 27,000 gallons of cupric ammonium carbonate were released into the Torch Lake from storage vats. Barrels have been found at several sites along the shoreline of the lake and on the lake bottom.

The Torch Lake NPL Site is comprised of several smaller sites ranging from approximately 10 acres to more than 200 acres. The sites are located around the Keweenaw Peninsula. The Torch Lake NPL Site was primarily listed because of the detrimental ecological effects of copper and mine tailings on aquatic organisms and to the surface water of Torch Lake. When it was added to the NPL, the Torch Lake NPL Site was defined to include Torch Lake, the northern portion of Portage Lake, North Entry, and tributary areas. Other related areas were added during the investigation phase and the Record of Decision (ROD) for Operable Units 1 and 3 addressed tailing piles and slag piles/beach deposited along the western shore of Torch Lake, Northern Portage Lake, Keweenaw Waterway, Lake Superior, Boston Pond and Calumet Lake. Tailing piles in Lake Linden, Hubbell/Tamarack City, Mason, Calumet Lake, Boston Pond, Michigan Smelter, Isle Royale, Lake Superior, and Gross Point were also included. The remedial investigation and cleanup efforts focused on areas along the shores of Torch Lake and the surrounding areas, where stamp sands and tailings were a concern for erosion into the waterways. Buildings and other related structures that were not shown to be a concern for erosion into surface water, were not included as part of the Torch Lake NPL Site.

By the fall of 2004, approximately 700 acres of stamp sands and slag were remediated by U.S. EPA. This included stamp sands along the western shore of Torch Lake, Dollar Bay, Point Mills, Calumet Lake, Boston Pond, and Michigan Smelter. The U.S. EPA Torch Lake NPL Site cleanup primarily addressed the negative ecological effects on area water bodies as a result of more than a century of copper mining, milling, and smelting in the area. The most significant ecological effect is the degradation of the benthic community in area water bodies as a result of past and current metal and particulate-matter surface water loadings from mining wastes, including stamp sand, located on land along and near area water bodies. The U.S. EPA cleanup

decision for terrestrial portions of Torch Lake NPL Site is documented in the September 30, 1992, U.S.EPA ROD.

The 1992 ROD included constructing a soil and vegetative cover over exposed mining wastes on properties that border area water bodies. This cover was designed to prevent further contamination and ecological degradation of area water bodies by reducing the ongoing transport (*i.e.*, wind erosion, surface water runoff, and shoreline erosion) and loading of mining waste metals and particulate matter. The area water bodies were then allowed to naturally recover.

In August 1994, U.S. EPA contracted with the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) to perform remedial design work. In September 1998, U.S. EPA also contracted with the USDA-NRCS to perform remedial action management and oversight throughout the cleanup process.

In April 2002, a partial NPL delisting of the Lake Linden portion of the Torch Lake NPL Site and all of operable unit 2 (sediments, surface water, and groundwater) was finalized. The partial delisting of the Hubbell/Tamarack City portion of the Torch Lake NPL Site was finalized in 2004.

Low lake levels experienced during 2007 at Torch Lake exposed stamp sands and, in the Village of Lake Linden, a sludge material previously under water along the shore. The Michigan Department of Environmental Quality (MDEQ) collected samples of the sludge which was located adjacent to a public beach within the Lake Linden Recreation Park (LLRP). Laboratory analysis of the sludge revealed the presence of antimony, arsenic, barium, copper, and lead at concentrations exceeding MDEQ Part 201 Residential Direct Contact Criteria (RDCC) (Use of surveyed properties varied and comparison to RDCC is for reference only), and exceeded, by a factor of 20, the extract of Toxicity Characteristic Leaching Procedure (TCLP) limits. These results indicate the sludge was a characteristically hazardous waste under 40 Code of Federal Regulations (CFR) 261.24. This discovery prompted a time-critical removal action to remove the sludge and the need for additional assessment to determine if other areas were similarly impacted.

1.3 PROJECT OBJECTIVE

The primary project objective of the Torch Lake AA was to evaluate imminent threats to human health, welfare and the environment, along with identification of areas for additional investigation. The specific geographical locations and pathways evaluated during the AA were:

- Direct-contact hazards associated with exposed stamp sand and the potential presence of
 other mining-era related waste along the western shoreline of Torch Lake. The area
 evaluated was the recently exposed shoreline between the edge of the U.S. EPA-installed
 vegetative cover and the waters edge as a result of the significantly lower surface-water
 levels in Lake Superior and its contiguous water bodies. These previously shallow water
 areas had not been investigated;
- Direct-contact hazards associated with exposed stamp sand and the potential presence of other mining-era related waste near Gay, where no remedial efforts have been implemented; and,
- Limited evaluation of potential environmental concerns at abandoned mining-era related industrial buildings, ruins, and land areas proximal to the western shoreline of Torch Lake, the shoreline of Lake Superior, and the north side of the Portage Waterway between the Quincy Smelter and H&Y Marina.

SECTION 2 SCOPE OF WORK REVIEW

A scope of work (SOW) was developed and implemented through efforts by the U.S. EPA and WESTON START to accomplish the project objectives of identifying imminent threats to human health, welfare, and the environment at multiple AOIs at the Torch Lake NPL Site, and additional AOIs identified in cooperation with U.S. EPA and the MDEQ Remediation and Redevelopment Division (RRD).

The SOW was divided into the following tasks: Pre-assessment activities, AA field activities, sample and data management activities, and preparation of the AA report.

2.1 TASK 1 – PRE-ASSESSMENT ACTIVITIES

Pre-assessment activities were completed prior to the start of AA field activities. This work included preparing the site-specific work plan (WP) and health and safety plan (HASP), conducting a preliminary investigation of potential AOIs, and assisting U.S. EPA with site access.

The WP was prepared based on discussions with the U.S. EPA On-Scene Coordinator (OSC), a review of aerial photographs, available file materials, and a preliminary survey of potential AOIs along the western shoreline of Torch Lake and the Portage Waterway.

In addition, WESTON START performed a review of existing information and an evaluation of current site conditions. WESTON START reviewed the available MDEQ-RRD and U.S. EPA file information for select AOIs. A list of the documents that were reviewed is presented in **Section 5.0**. **Attachment A** lists the current status of site access for each area under investigation.

2.2 TASK 2 – AA ACTIVITIES

In general, AA activities were conducted using a phased approach that included an initial reconnaissance/assessment and follow-up sample collection (if appropriate) at each AOI. Three field teams composed of U.S. EPA Field Environmental Decision Support (FIELDS) personnel and WESTON START conducted the AA. All field activities were completed using the approach outlined in the site-specific WP and the START III Generic Quality Assurance Project

Plan (QAPP), dated June 2006, and AOI-specific Incident Action Plans developed for the AA.

Depending upon the features associated with each AOI, AA efforts included the following:

- Visual assessment/photo documentation of buildings, structures, exposed debris and materials, and areas with exposed stamp sand shorelines;
- Visual assessment/photo documentation of site soils, sediments, and surface water;
- Use of global positioning system (GPS) equipment to log and map specific locations/media targeted for additional assessment (WESTON START);
- Real-time x-ray fluorescence (XRF) screening of soils for metals, with verification by collection of laboratory analytical samples from a subset of the XRF screening locations (WESTON START);
- Collection of XRF and GPS screening of soils and exposed sediments along Torch Lake and Lake Superior shoreline areas (Gay Stamp Sands) utilizing the Rapid Assessment Tools (RAT) system, with verification by collection of laboratory analytical samples from a subset of the XRF screening locations (U.S. EPA FIELDS);
- Inclusion of PCB analysis in the samples collected for laboratory analysis; and
- Collection of additional, multi-media samples and laboratory analysis, as determined necessary in the field.

Photo documentation of AA activity and site features referenced in this document is presented in **Attachment B**.

2.2.1 Targeted AOIs

The list of targeted AOIs for the Torch Lake AA includes: (listed according to locational relationship)

- AOI 7 Quincy Smelter;
- AOI 15 Additional Properties Adjacent to Quincy Smelter;
- AOI 16 Dollar Bay Wire Mill;
- AOI 17 Dollar Bay Well Field;
- AOI 10 Mason Sands;
- AOI 18 Building in Mason;
- AOI 19 Former C&H Leach Plant and Hubbell Stamp Sands;
- AOI 20 Tamarack City Stamp Mill;
- AOI 21 Hubbell Beach and Slag Dump;
- AOI 22 Hubbell Docks, Mineral Building, and C&H Smelter;

- AOI 12 Lake Linden Sands;
- AOI 23 C&H Power Plant;
- AOI 24 Backwater Area of Torch Lake;
- AOI 25 Traprock Slag Dump;
- AOI 26 Bootjack Stamp Sands;
- AOI 14 Gay Stamp Sands;
- Various AOIs Western Shoreline of Torch Lake; and
- AOI 27 Drums on Lake Bottom.

A detailed description of each primary targeted AOI is provided in **Section 3.0**.

2.2.2 Soil Screening Using XRF

Targeted soils were initially screened by WESTON START/U.S. EPA FIELDS using an XRF (Niton and/or Innov-X 4000 XP/Auto XRF models) instrument in accordance with procedures outlined in the site-specific WP. All locations where XRF screenings were conducted by WESTON START were located utilizing a sub-meter GPS device. U.S. EPA FIELDS personnel utilized the RAT system software to collect XRF and GPS data. The RAT software, developed by U.S. EPA's Region V FIELDS Team, enables the user to collect real-time data utilizing GPS and other monitoring devices using their digital data outputs. Use of the RAT software at the Torch Lake AA site allowed U.S. EPA FIELDS teams to collect and store real time XRF and GPS data in a flat file, which in turn allowed the data to be plotted and viewed in the field on aerial photography. Automated collection of data in the field allowed WESTON START to produce daily GIS plots showing locations of data collected.

Sample collection for laboratory analysis was performed at suspect locations or at a target minimum of 10% of the screening locations to verify the XRF results and to assess the presence of the contaminants of concern (COCs).

2.2.3 Soil and Exposed Sediment Sampling

The U.S. EPA FIELDS and WESTON START teams collected soil and exposed sediment samples for laboratory analysis during follow-up AA activities based on the results of initial reconnaissance efforts and XRF screening results. Twenty-four soil and exposed stamp sand

samples were collected per WESTON START standard operating procedures (SOP) as outlined in the *START III Generic QAPP*, for laboratory analysis of 14 select Target Analyte List (TAL) metals and polychlorinated biphenyls (PCBs).

Laboratory data and validation reports for all soil sampling results discussed in the text are presented in **Attachment C**.

2.2.4 Waste Sampling

The WESTON START team collected one waste sample of a tar-like material from AOI 15 (See **Section 3.2.3**) during the AA using WESTON START SOPs, as outlined in the *START III Generic QAPP*. The sample was submitted to the laboratory for analysis of 14 select TAL metals, PCBs, Semi-volatile and volatile organic compounds (SVOC/VOC), and cyanide.

The laboratory data and validation report for the waste sampling results discussed in the text are presented in **Attachment C**.

2.3 TASK 3 – SAMPLE AND DATA MANAGEMENT ACTIVITIES

All laboratory analytical samples were collected in laboratory-supplied containers using sampling techniques and equipment in accordance with the site-specific WP and the *START III Generic QAPP*. All sample containers were tightly sealed and immediately packed upright, on ice, in coolers. Upon collection of all samples, the appropriate laboratory chain-of-custody forms were completed. Sample coolers were securely taped prior to transport to prevent any tampering or loss of samples. Samples were shipped, under chain of custody, via overnight courier in coolers with packing material to prevent breakage of sample containers. Samples were shipped in compliance with all applicable Department of Transportation (DOT) and International Airline Transportation Authority (IATA) Regulations.

SECTION 3 AREA ASSESSMENT RESULTS

3.1 AOI 7 – QUINCY SMELTER

3.1.1 Site Description

The Quincy Smelter (AOI 7) is located at 48991 Maple Street, Ripley, Franklin Township, Houghton County, Michigan (**Figure 2a**). AOI 7 consists of approximately 25 acres in a roughly rectangular shape, encompassing 1,483 feet of shoreline along Portage Lake. A former copper smelter and support buildings (total of 27 buildings) occupy AOI 7. Portage Lake is to the south of AOI 7, Highway 26 to the north, and private properties border AOI 7 to the east and west. The Hancock/Ripley Trail (HRT), a designated snowmobile trail also used for walking, running, and all-terrain vehicles, crosses AOI 7 from east to west along a former railroad bed.

The Quincy Mining Company (QMC) owned and operated AOI 7 as part of historic copper mining operations from the middle 1800s until 1969 when it closed. After smelting operations ended, QMC continued to operate a water company on AOI 7. In 1986, the Quincy Development Corporation (QDC) assumed ownership of the Quincy Smelter property. Franklin Township took ownership from QDC in 1999. AOI 7 is currently owned by Franklin Township.

3.1.2 Review of Existing Site Information

AOI 7 is included in the Torch Lake NPL Site. From 2002 through 2004, MDEQ, U.S. EPA, QDC, National Park Service (NPS), Franklin Township, and the Keweenaw National Historical Park have performed numerous investigations at this property, including:

- Brownfields Redevelopment Assessment (BFRA) (MDEQ, 2002);
- Historical land use survey (Archimede and Martin, 2002);
- Critical safety and preservation needs assessment and stabilization plan (Franklin Township, February 2003);

- Comprehensive Environmental Resource Conservation and Liability Act (CERCLA) removal assessment and removal action, including the transportation and disposal of more than 1,000 gallons of waste material from drums, tanks, vats, and small containers of oils, greases, solvents, powders, laboratory chemicals, and contaminated debris and soil (http://epaosc.net/site_profile.asp?site_id=889);
- Asbestos and heavy metals exposure/health-risk assessment following identification of friable asbestos-containing materials (ACM) at AOI 7 and determination that concentrations of metals in AOI 7 surface soils were above State of Michigan Part 201 direct contact and inhalation criteria (MDEQ, 2002); and
- Assessment of asbestos-related and physical hazards, documenting substantial amounts of friable bulk asbestos and ACM, as well as dangerous conditions due to the presence of dilapidated structures (WESTON, 2004).

Because sufficient information about AOI 7 was available in the MDEQ and U.S. EPA files, no additional AA field activities were conducted at this AOI.

3.2 AOI 15 – PROPERTIES ADJACENT TO QUINCY SMELTER

3.2.1 Site Description

Additional properties along the Portage Waterway shoreline east of the Quincy Smelter property to the H&Y Marina and the surrounding area makeup AOI 15. AOI 15 includes areas of exposed drums, tanks, a former manufactured gas plant (MGP) (Houghton County Gas & Coke) site, and debris and material related to historic mining-era-related industrial uses within the AOI limit. Currently, properties within AOI 15 (**Figure 2a**) include:

- Julio Marine and Salvage;
- Hanke Property;
- Copper Bowl;
- Diane B. Sprague Trust Property;
- Franklin Township Property;
- Zenith M. Manwell Property;
- Bootjack Holding/Ripley LLC or Raymond Kolehmainen Property (Former location of Houghton County Gas & Coke);
- Mickelsen Property;
- Julio Undeveloped Property;
- Julio Contracting;
- Clarence G. Hocking Trust Property;

- Julio Property;
- H&Y Marina; and
- The HRT (traverses all of AOI 15).

3.2.2 Review of Existing Site Information

Existing information was available for a selection of the properties in this AOI and is summarized in the following paragraphs.

Bootjack Holding/Ripley LLC or Raymond Kolehmainen Property (Former location of Houghton County Gas & Coke)

Two sources provided information regarding the former Houghton County Gas & Coke Plant: the current property owner, Mr. Raymond Kolehmainen; and Sanborn Maps from 1907 and 1917, coincident with plant operation. Notations on the 1907 Sanborn Map indicate that "coal gas process operation [occurred] day and night," and indicate the presence of a coke shed, coal shed, storage, and a large, round object labeled "gasometer". The 1917 Sanborn Map indicates the presence of a 15,000-gallon tank, located at ground level on the north side of the property near the former railroad tracks.

Mr. Raymond Kolehmainen, the current property owner, has communicated with individuals who were present at the property when it was operational. Reportedly, one individual mentioned that an open tar pit was located on the north side of the property; this was likely the 15,000-gallon ground-level tank. Pictures from the era of site operations, also provided by the owner, show a large above-ground storage tank (AST) containing fuel oil on site; this was likely the large round object labeled "gasometer" on the Sanborn Maps.

Mickelsen Property/ Undeveloped Julio Property

Notations on the Sanborn Maps from 1907 and 1917 referred to above indicate that these properties comprised the Portage Coal & Dock Company and were used for hauling and storing coal. Docks were located along the shoreline of Portage Lake in front of the Mickelsen and Undeveloped Julio Property.

Julio Contracting

Reviews of existing documents indicated that during audits performed by MDEQ in 1995, the Julio Contracting property was determined to be in violation of several natural resource regulations, including:

- Michigan's Part 111 of the Natural Resources and Environmental Protection Act (NREPA), 1994 PA 451, as amended (Part 111 of Act 451);
- Michigan Compiled Laws (MCL) 324.11101 et seq., and Subtitle C of the Federal Resource Conservation and Recovery Act (RCRA), as amended; and
- Any regulations promulgated pursuant to these Acts.

AOI 15 – General

Review of existing documents also indicated that MDEQ performed a BFRA for the HRT. MDEQ's findings for surface soil analysis indicated the presence of benzene, ethylbenzene, anthracene, xylenes, acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, carbazole, dibenzofuran, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, aluminum, antimony, arsenic, chromium, cobalt, iron, magnesium, manganese, mercury, selenium, silver, cyanide, and vanadium at concentrations greater than the Generic Residential Cleanup Criteria (GRCC) of Part 201 of the NREPA. The concentrations of benzo(a)pyrene, benzo(a)anthracene, arsenic. cyanide, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene exceeded the soil RDCC. The concentration of benzo(a)pyrene also exceeded the Generic Industrial Cleanup Criteria of Part 201 of the NREPA. Because these contaminants were detected at concentrations in excess of the GRCC, the HRT property was considered a "facility" under Part 201 of the NREPA.

The MDEQ assessment also indicated that contaminants detected at the property may migrate toward downgradient receptor areas and into other environmental media within the property. Based on site characteristics and sampling data, the soil is the primary source of contamination at the property, and contaminants in the soil may potentially be transported from soil to groundwater, soil to surface water, or soil to air. The potential exposure routes that have been identified for the property include ingestion of drinking water and soil, dermal adsorption of contaminants in groundwater, and inhalation of dusts and vapors from soil.

3.2.3 Summary of Field Activities

WESTON START personnel performed visual and photo assessments of the properties visible from the HRT on September 6, 2007, before access to any of the properties was granted. Several ASTs, underground storage tanks (UST) located above ground as scrap, compressed-gas cylinders, and drums were noted for further investigation. All noted items discovered while traversing the HRT were documented on properties where access was later granted. These properties are discussed below. Access was granted to all properties warranting additional assessment based on the September 6, 2007, HRT survey. Property owners granting access to U.S. EPA and WESTON START for the AA and sampling include those listed in **Section 3.2.1**.

Julio Marine and Salvage

The Julio Marine and Salvage is a commercial scrap metal recycling yard (**Figure 2a**). Drums, ASTs, USTs, electrical equipment, compressed-gas cylinders labeled as propane and other materials, crushed gas tanks, engines, automobiles with oil and gas tanks present, and car batteries were observed on site. With the exception of the car batteries, automobiles, and some of the drums, all items appeared empty and stacked with like materials. Large piles of stamp sands were also present on site, stockpiled for creating and repairing roads within the scrap yard. Per the scope of the AA, XRF screening was conducted only at the property shoreline.

Other site features that were documented during the AA include:

- Evidence of past fires in more than one location;
- Several drums with unknown contents stored within a tall metal vault;
- A large pile of stained soil mixed with metal debris, approximately 20 feet long, five feet wide, and three feet tall, located near a scale station; and
- An oily sheen west of the scrap yard main building.

Historical information indicated that transformers had been identified on the property in the past, but neither transformers nor evidence of transformers were observed during the AA.

Franklin Township Property

WESTON START personnel performed the AA at the Franklin Township property on September 12, 2007. This property is an undeveloped, vacant lot. No suspicious material was observed during the AA at this property and no XRF screening was performed.

Hanke Property

WESTON START personnel performed the AA at the Hanke Property on September 12, 2007. The Hanke Property is a residential location north of the HRT. The majority of the site is paved with asphalt. No suspicious material was noted during the AA and no XRF screening was performed at this location.

Copper Bowl

WESTON START personnel performed the AA at the Copper Bowl on September 12, 2007. The Copper Bowl is a commercial bowling alley open to the public. The majority of the site is paved with asphalt. A bulged drum, discolored with black residue, was observed on the south edge of the property along the HRT. The drum may contain grease or other food-related waste. No XRF screening was performed at this location.

Bootjack Holding/Ripley LLC or Raymond Kolehmainen Property (former location of Houghton County Gas & Coke)

WESTON START conducted the AA at the Kolehmainen Property, formerly the Houghton County Gas & Coke Plant on September 10 and 11, 2007. Two buildings currently exist on site along with debris, slag, coal, tar-like debris, ASTs, compressed-gas cylinders, and exposed stamp sands along the shoreline. The current landowner capped the majority of the property with gravel. The landowner showed WESTON START personnel the location of a tar vault that he discovered while digging on site approximately one year prior to the AA. On September 10, 2007, the landowner dug up the tar vault so WESTON START personnel could observe the tar, and collect a tar/soil sample. The landowner reported that the vault contains a black liquid with tar-like odor and the consistency of molasses. WESTON START collected a wet, tar-like sample from material outside the vault (MGP-TAR).

Tar was also observed at the property shoreline. It appears as though the tar seeps to the ground surface during warmer weather.

Other site features that were documented during the AA include:

- Dilapidated site structures;
- An unknown extent of tar-like material;
- Piles of coal;
- ASTs and compressed gas cylinders present in both buildings; and
- Evidence of a well located inside a sandstone building.

Due to documented conditions on site and the inability of the WESTON START to view all site areas, there is a potential that other non-observed sources of contamination are present.

Mickelsen Property

WESTON START personnel performed the AA at the Mickelsen property on September 12, 2007. This property is in the process of being developed and has been capped. The current landowner has poured a foundation and plans to construct a home. The property is adjacent to the former location of Houghton County Gas & Coke and may contain tar-like material under the surface cap near the shoreline, based on information provided by the owner of the former Houghton County Gas & Coke site. Historically, this property was used for coal storage and WESTON START observed coal and coal mixed with soils on site.

Julio Undeveloped Property

WESTON START personnel performed the AA at the Julio Undeveloped Property on September 12, 2007. This property is an undeveloped, vacant lot. No suspicious material was noted and no XRF screening was performed.

Julio Contracting

WESTON START personnel performed the AA at the Julio Contracting property on September 12, 2007. During the AA, WESTON START observed drums, ASTs, USTs, automobile and marine batteries, historic debris piles, stamp sand piles for road construction, construction debris, and construction equipment.

Other site features that were documented during the AA include:

- Oil-stained soil on the north side of the HRT and northeastern side of the property;
- A 20,000-gallon AST located on the northwestern side of the property;
- A well located next to the large AST;
- A creek running perpendicular to M-26, located on the western side of the property, that was stagnant, murky, and brown in color; and
- Empty, submerged drums located along the shoreline where boats were docked.

Clarence G. Hocking Trust Property

WESTON START personnel performed a portion of the AA at the Clarence G. Hocking Trust Property on September 7, 2007. This property is currently used for boat storage and the majority of the site is paved with asphalt. No suspicious material was observed.

Julio Property

WESTON START personnel performed the AA at the Julio Property on September 12, 2007. This commercial property contains construction debris, ASTs, drums, automobile and marine batteries, a large pile of stacked household-sized liquid propane tanks, piles of stamp sands for road building and repair, old equipment, and historical mining-related buildings. None of the buildings were open for reconnaissance.

Other features observed during the AA include:

- A large AST that appeared to be leaking slowly from a spigot;
- Old Michigan Department of Transportation equipment used for road-building that may still contain tar-like materials; and
- An oil heater tank that may contain oil.

H&Y Marina

WESTON START personnel performed the AA at the H&Y Marina on September 12, 2007. This location is a commercial boat marina. Stamp sands were identified along the shoreline where low lake levels have exposed previously submerged material. The area from the newly exposed shoreline to M-26, north of the lake, appeared to have been capped. The owner was present and mentioned that he had been operating the marina for more than 20 years.

3.2.4 Summary of XRF Results

Locations at AOI 15 where XRF screening was conducted and results exceed RDCC (use of surveyed properties varied and comparison to RDCC is for reference only) are shown on **Figure 2b**. All XRF screening results are presented in **Table 1**.

Julio Marine and Salvage

The majority of the shoreline was covered with rock/brick debris. Three shoreline areas of exposed stamp sand and/or slag were screened with an Innov-X 4000 XP/Auto XRF (JulioScrap-3 through JulioScrap-5). No metals were detected at concentrations exceeding RDCC.

Bootjack Holding/Ripley LLC or Raymond Kolehmainen Property (former location of Houghton County Gas & Coke)

Ten locations were screened with an Innov-X 4000 XP/Auto XRF at this location, nine on September 10, 2007, and one on September 11, 2007. Two of the ten locations screened by XRF exhibited concentrations of metals in excess of RDCC. The hard, brown, tar-like material (MGP-23) contained concentrations of lead in excess of RDCC, and the black-stained soils (MGP-25) contained concentrations of arsenic in excess of RDCC.

Mickelsen Property

During the AA, two locations were screened with an Innov-X 4000 XP/Auto XRF; the shoreline of exposed stamp sands (Michelsen-6), and black-stained soils east of the future residence (Mickelsen-7). No metals were detected in excess of RDCC at either screening location.

Julio Contracting

Per the scope of the AA, XRF screening was performed only along the shoreline at one location, JulioCon-13. No metals were detected in excess of RDCC. The majority of the shoreline consisted of rip-rap, brick, and/or block debris with little or no stamp sand exposure.

Clarence G. Hocking Trust Property

One location at the exposed stamp sand shoreline was screened with an Innov-X 4000 XP/Auto XRF (HockingsB-20). All metal concentrations were below RDCC.

Julio Property

Per the scope of the AA, XRF screening was performed only along the shoreline at two locations (JulioSalvage-15 and JulioSalvage-16). All metals concentrations detected in both samples were below RDCC.

H&Y Marina

Three locations were screened with an Innov-X 4000 XP/Auto XRF, two stamp sand locations and one black-stained soil. One of the stamp sand locations exhibited arsenic concentrations in excess of RDCC (H&Ymarina-17) and the black-stained soil location (H&Ymarina-19) exhibited iron concentrations in excess of RDCC.

3.2.5 Summary of Laboratory Results

Locations at AOI 15 where laboratory samples were collected and analytical results for metals exceed RDCC are documented on **Figure 2b**. All laboratory results for metals are presented in **Table 1**, and laboratory results for PCBs are presented in **Table 2**. Samples for laboratory analysis were collected from six locations within AOI 15.

Bootjack Holding/Ripley LLC or Raymond Kolehmainen Property (Former location of Houghton County Gas & Coke)

Samples were collected for laboratory analysis at three of the soil locations that were screened with an XRF; MGP-1, MGP-21, and MGP-26. Laboratory results from MGP-21 and MGP-26 exhibited arsenic concentrations in excess of the RDCC. XRF screening results at locations MGP-21 and MGP-26 did not exceed RDCC. As discussed previously, this is likely due to the limit of detection of the XRF screening method. No PCBs were detected in these samples at concentrations greater than RDCC.

An additional sample was collected of a tar-like material present at the site (MGP-TAR). All metals concentrations in this sample, as determined in the laboratory, were below RDCC. Concentrations of the following SVOCs were detected in excess of RDCC in sample MGP-TAR: acenapthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, naphthalene, and phenanthrene (**Table 3**). VOC concentrations in sample MGP-TAR that exceeded RDCC include: 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, naphthalene, toluene, and total xylenes. The concentration of total cyanide in sample MGP-TAR was below RDCC.

Mickelsen Property

During the AA, a sample was collected for laboratory analysis at one of the two locations screened with an XRF, Mickelsen-6. The concentration of arsenic in the sample, as determined by the laboratory, was in excess of the RDCC. However, no metals were detected in excess of RDCC during XRF screening of this sample. The limit of detection of the XRF screening method is typically higher than that of laboratory analysis. No PCBs were detected in sample Mickelsen-6.

H&Y Marina

A sample was collected for laboratory analysis at one of the three locations screened with an XRF, H&Y marina-19. XRF screening results revealed iron concentrations in excess of the RDCC and the laboratory results exhibited arsenic and lead concentrations in excess of RDCC. The RDCC for lead is 400 milligrams per kilogram (mg/kg). The XRF screening result for

sample H&Y marina-19 was 340 mg/kg and the laboratory results was 440 mg/kg. Therefore, the relatively low variability between XRF lead results and laboratory lead results was significant since XRF screening indicated a concentration below RDCC while laboratory results indicated a concentration greater than RDCC. Iron was not analyzed in the laboratory sample. No PCBs were detected in excess of RDCC in sample H&Y marina-19.

3.3 AOI 16 – DOLLAR BAY WIRE MILL

3.3.1 Site Description

The former use of the Dollar Bay Wire Mill property is unknown at this time, although it is assumed that mining-era operations occurred at this property. Numerous buildings remain on site, and the property is currently an operational boat storage yard (**Figure 3a**).

3.3.2 Review of Existing Site Information

The U.S. EPA previously remediated the western portion of this property by placing a gravel cover as part of the Torch Lake NPL remedy. The planned U.S. EPA remedial activities are summarized in the Torch Lake NPL Site ROD, and a summary of the completed Torch Lake remedial action is provided in the *Superfund Preliminary Site Closeout Report, Final Remedial Action for Torch Lake Superfund Site, Houghton County, Michigan* (U.S. EPA, 2005). A comprehensive Remedial Action Completion Report is being compiled by the U.S. EPA Remedial Program at this time. Therefore, the extent of remediation of these mining-waste deposits via the placement of the gravel cover is not restated here.

3.4 AOI 17 – DOLLAR BAY WELL FIELD

3.4.1 Site Description

There are two areas associated with AOI 17. The first area includes two parcels of privately-owned land between the Dollar Bay Well Field and the Dollar Bay Wire Mill (AOI 16). These parcels are owned by Paul and Lois Malinowski. The second area of AOI 17 is the Dollar Bay Well Field, currently owned by Osceola Township, and the surrounding area that was not part of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts (**Figure**

3a). This area constitutes a new AOI based on the presence of foundation materials, slag, and refractory brick on site.

3.4.2 Review of Existing Site Information

One of the privately-owned parcels of this AOI, between the Dollar Bay Well Field and the Dollar Bay Wire Mill, was previously remediated by U.S. EPA via the placement of a vegetative cover and fencing on the parcel as part of the Torch Lake NPL Site remedy. The planned U.S. EPA remedial activities are summarized in the Torch Lake NPL Site ROD, and a summary of the completed Torch Lake remedial action is provided in the *Superfund Preliminary Site Closeout Report, Final Remedial Action for Torch Lake Superfund Site, Houghton County, Michigan* (U.S. EPA, 2005). A comprehensive Remedial Action Completion Report is being compiled by the U.S. EPA Remedial Program at this time. Therefore, the extent of remediation of these miningwaste deposits via the placement of the vegetative cover is not restated here.

The second area of AOI 17, the Dollar Bay Well Field and the surrounding area that was not part of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts, contains foundation materials, slag, and refractory brick. In addition, the property includes stamp sand deposits. WESTON START did not identify any existing documentation pertaining to this portion of AOI 17.

3.4.3 Summary of Field Activities

WESTON START personnel performed the AA at AOI 17 on September 7 and September 12, 2007. No suspicious material was observed in the capped area of AOI 17 with the exception of exposed stamp sands along the shoreline of the capped property. The uncapped property contained exposed foundation materials, debris, slag, and exposed stamp sands.

3.4.4 Summary of XRF Results

A total of four locations were screened with the XRF at this AOI (**Table 4**). Three locations were located in the uncapped area of the site: the exposed stamp sand shoreline and two suspicious-looking slag/stamp sand piles located on the interior of the property. Both of the slag/stamp sand piles screened in the uncapped area contained concentrations of arsenic

exceeding of RDCC (locations DollarB-11 and DollarB-12, **Figure 3b**). One of the samples also contained copper concentrations exceeding RDCC (DollarB-12), and another contained iron in excess of the RDCC (DollarB-19). The screening location DollarB-11 was part of a large surface deposit of stamp sands approximately 100 feet long by 100 feet wide. Screening location DollarB-12 was at a slag/stamp sand pile approximately five feet long by four feet wide.

3.4.5 Summary of Laboratory Results

No laboratory analytical samples were collected at this AOI.

3.5 <u>AOI 10 – MASON SANDS</u>

3.5.1 Site Description

The Mason Sands AOI includes the Quincy Mining Company Leach Plant ruins, a beached dredge, a smokestack, stamp sands, and other mining-era building ruins (**Figure 4a**).

3.5.2 Review of Existing Site Information

Contaminants in stamp sand deposits at Mason Sands were addressed during previous U.S. EPA remedial efforts via the placement of a vegetative cover along the shoreline portion of the property as part of the Torch Lake NPL Site remedy. The planned U.S. EPA remedial activities are summarized in the Torch Lake NPL Site ROD, and a summary of the completed Torch Lake remedial action is provided in the *Superfund Preliminary Site Closeout Report*, *Final Remedial Action for Torch Lake Superfund Site*, *Houghton County*, *Michigan* (U.S. EPA, 2005). A comprehensive Remedial Action Completion Report is being compiled by the U.S. EPA Remedial Program at this time. Therefore, the extent of remediation of these mining-waste deposits via the placement of the vegetative cover is not restated here.

MDEQ has reported that the hull of the beached dredge at the Mason Sands AOI was painted with a mixture of lampblack and red lead paint. In addition, the smokestack ruins on site contain high arsenic levels.

A review of existing documentation revealed that the current property owner, Lakeshore Estates, completed and submitted a Category A Baseline Environmental Assessment (BEA) to MDEQ in

April 1997. In addition, Osceola Township, while contemplating developing a historical interpretive park at the site, completed and submitted a Category A BEA to MDEQ in July 1998 for a 6.87-acre area of the Mason Sands. No significant findings were identified from the BEAs.

Review of existing site documentation indicated that the U.S. Department of Health and Human Services (DHHS) completed a health consultation for Torch Lake (March 23, 1998) that concluded that the "Mason Sands do not pose an urgent public health hazard under current conditions".

3.5.3 Summary of Field Activities

WESTON START and U.S. EPA FIELDS teams conducted the AA at AOI 10 including a visual assessment, XRF screening of suspicious materials, a reconnaissance of newly exposed stamp sand deposits, and sample collection for laboratory analytical verification. On September 6, 2007, the WESTON START team assessed buildings and ruins, and on September 12, 2007, the U.S. EPA FIELDS teams conducted assessments along the shoreline.

AOI 10 contains exposed foundation materials, debris, empty drums, slag, coal, and exposed stamp sands. These materials were largely encountered to the north of the beached dredge on the east side of M-26 (**Figure 4a**). Piles of stamp sands and/or slag of various colors, including gray, red, black, green, and tan, were observed during the AA.

Other site features that were documented during the AA include:

- Several breaches were evident in the perimeter fence, and the access gate does not lock properly;
- Vandalism and trespassing were evident in all site areas;
- Empty drums were stored on site;
- A small concrete building was observed near the Quincy Mining Company Leach Plant building ruins that may contain a UST as evidenced by a one-inch stick-up located inside the building, a petroleum odor that was noted by WESTON START, and a "No Smoking" sign painted on the outside of the building;
- A former transformer pad was observed near the Quincy Mining Company Leach Plant building ruins;

 Additional pipes were observed at the north-central portion of the Quincy Mining Company Leach Plant building ruins, indicating the potential for additional USTs and ASTs on site.

3.5.4 Summary of XRF Results

The U.S. EPA FIELDS team screened 25 locations on September 12, 2007, along the shoreline between Mason and Tamarack City with an XRF unit (**Table 5**), and collected five samples for laboratory analytical verification. No suspicious material was observed beyond stamp sands during the AA. Therefore, U.S. EPA FIELDS performed XRF screening every one quarter mile along the shoreline. Two locations along the shoreline exhibited arsenic concentrations greater than RDCC (TM-S1-02, and TM-S1-05), and one of the two locations (TM-S1-05) also contained lead concentrations greater than RDCC (**Figure 4b**).

WESTON START personnel screened twelve locations within the building ruins with an XRF unit and collected two samples for laboratory analytical verification on September 6, 2007. XRF screening yielded concentrations of metals greater than RDCC at five locations. Three locations contained arsenic at concentrations greater than RDCC (MasonB-3, MasonB-10, and MasonB-13), two locations contained lead at concentrations greater than RDCC (MasonB-6 and Mason B-10), and one location contained copper at a concentration greater than RDCC (MasonB-12). Location MasonB-6 was on a gray slag pile approximately five feet in diameter and 10 inches tall. Location MasonB-10 was a small, green-stained stamp sand/slag pile inside the Quincy Mining Company Leach Plant building ruins. Location MasonB-12 was a green-stained, rocky soil area located within one of the round structures observed within the Quincy Mining Company Leach Plant building ruins. Samples were collected and submitted for laboratory analysis for locations MasonB-6 and MasonB-10.

3.5.5 Summary of Laboratory Results

Samples were collected for laboratory analysis from five of the 25 locations screened with an XRF by the U.S. EPA FIELDS along the shoreline between Mason and Tamarack City and two of the 12 locations screened within the building ruins in Mason by WESTON START. A summary of the analytical results is presented below:

- As determined by laboratory analysis, no metals concentrations exceeded RDCC in samples collected at three of the five locations screened by U.S. EPA FIELDS (MS-S1-12, TM-S1-02, and TM-S2-02). No metals concentrations exceeded RDCC at these locations during XRF screening, either, with the exception of arsenic at location TM-S1-02. Arsenic concentrations in sample TM-S1-02 were determined to be 0.35 mg/kg by laboratory analysis and 8 mg/kg by XRF screening.
- Laboratory results for the sample collected at location MS-S1-13 exhibited arsenic concentrations greater than RDCC, however arsenic concentrations were less than RDCC during XRF screening at this location.
- Laboratory results for the sample collected at location TM-S1-05 exhibited arsenic and lead concentrations greater than RDCC, and concentrations of arsenic and lead were also greater than RDCC during XRF screening of the location where the sample was collected. It should be noted that there is a significant difference between arsenic and zinc results in this sample as determined by the different methods. Arsenic concentrations were measured as 9.8 mg/kg by laboratory analysis, and 72 mg/kg by XRF. Zinc concentrations were measured as 9,100 mg/kg by laboratory analysis, and 1,513 mg/kg by XRF.
- Laboratory and XRF screening results for location MasonB-6 identified concentrations of lead greater than RDCC. Concentrations of lead as determined by the laboratory were nearly twice as high (1,100 mg/kg) as that determined by XRF (553 mg/kg). Sample MasonB-6 was collected from coarse stamp sand/slag material that was heterogeneous in nature. This may explain the difference in the results of the two types of instrumentation.
- Laboratory results for the sample collected at location MasonB-10 indicated that all metal concentrations were less than RDCC. However, concentrations of arsenic and lead, as determined by XRF, exceeded RDCC.

PCBs were analyzed in seven samples collected at AOI 10: Mason XRF6, collected as screening location MasonB-6; Mason XRF10, collected at screening location MasonB-10; and samples MS S1-12, MS S1-13, TM S1-02, TM S1-05, and TM S2-02 collected at screening locations of the same names. PCBs were not detected in the samples collected at AOI 10.

3.6 AOI 18 – BUILDING IN MASON

3.6.1 Site Description

The Building in Mason, which was not part of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts, constitutes a new AOI (**Figure 4a**). The former use of this building is unknown at this time; however, it is assumed that its use was related to mining-era operations. This property is located on the west side of highway M-26 in the town of Mason

near the Mason Sands. The property contains a dilapidated building, exposed foundation materials, debris, empty drums, and old potentially asbestos-wrapped piping.

3.6.2 Review of Existing Site Information

WESTON START did not identify any existing documents pertaining to AOI 18.

3.6.3 Summary of Field Activities

WESTON START personnel performed the AA of the Building in Mason on September 6, 2007. There was evidence of trespassing and vandalism. Approximately 50 feet of piping wrapped with potential ACM was located on the western interior of the building. Damaged pipe wrap was also present in piles on the floor along the western interior of the building. Roofing material expected to contain asbestos was observed on the second level of the building. No materials expected to contain elevated concentrations of metals were observed; therefore, no XRF screening was conducted.

3.6.4 Summary of XRF Results

No XRF screening was conducted at AOI 18 during the AA.

3.6.5 Summary of Laboratory Results

No laboratory samples were collected at AOI 18 during the AA.

3.7 <u>AOI 19 – FORMER C&H LEACH PLANT AND HUBBELL STAMP SANDS</u>

3.7.1 Site Description

AOI 19 includes the Former C&H Leach Plant and a shoreline area known as the Hubbell Stamp Sands (**Figure 5a**). The C&H Leach Plant is located in the area of the Burcar Construction yard. The U.S. EPA FIELDS and WESTON START teams were denied access to the C&H Leach Plant.

3.7.2 Review of Existing Site Information

The C&H Leach Plant, located in the area of the Burcar Construction yard, was not part of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts, and constitutes a new AOI based on mining-era operations at the property.

Available site information included results of sampling performed on the property on August 9, 2007, by MDEQ. **Attachment D** contains a figure showing the approximate MDEQ sampling and screening locations, and a table summarizing the XRF and laboratory analytical results. The sampling and screening results indicated the presence of arsenic, copper, lead, antimony, and iron at concentrations greater than RDCC.

3.7.3 Summary of Field Activity

U.S. EPA FIELDS performed reconnaissance and XRF screening along the shoreline of the Hubbell Stamp Sands portion of AOI 19 on September 12, 2007.

3.7.4 Summary of XRF Results

U.S. EPA FIELDS screened 18 locations with the XRF unit (**Table 6**) and one sample was collected and submitted for verification via laboratory analysis (HUB-S1-13). Two locations that were screened with an XRF unit exhibited arsenic concentrations greater than RDCC (HUB-S1-08 and HUB-S1-10) (**Figure 5b**).

3.7.5 Summary of Laboratory Results

One of the 17 locations screened by XRF, HUB-S1-12, was also sampled for verification via laboratory analysis. As determined by laboratory analysis, no metals concentrations exceeded RDCC in this sample. These results are consistent with XRF screening results at the same location.

No PCBs were detected in sample HUB-S1-12.

3.8 <u>AOI 20 – TAMARACK CITY STAMP MILL</u>

3.8.1 Site Description

The Tamarack City Stamp Mill (AOI 20) is located in Tamarack City, Houghton County, Michigan. Specifically, the site is located in Section 13 of Osceola Township, Township 55 North and Range 33 West (**Figure 6**). AOI 20 is bounded by Highway M-26 to the north/northwest, a park to the west/southwest, Spruce Road to the south and east, Sixth Street to the northeast, and is surrounded by residential property. Torch Lake is located to the southeast and east of AOI 20.

The property, known previously as the Ahmeek Mining Company Stamp Mill, or Ahmeek Regrind, was used for the processing of copper-containing ores from approximately 1906 to 1968. The Ahmeek Mining Company installed eight steam-powered stamp units on top of large concrete foundations. The stamp units were used to extract copper ore from mine rock. Additionally, chemicals may have been used to assist with the process of separating the copper from the mine rock. It has also been reported and confirmed through aerial photography that waste material from the stamping process (stamp sand) was deposited into Torch Lake.

Remnants of the former copper stamping mill, including concrete foundations and structures, as well as stamp sand and demolition debris, remain at AOI 20. Due to the historical significance of copper mining in the Keweenaw Peninsula, and the area where AOI 20 is located, the Tamarack City Stamp Mill is considered an asset, and is targeted for historical preservation and potential use as an interpretive center for tourists.

The following hazards, related to the Tamarack City Stamp Mill, exist at the site:

- Historical demolition activities at AOI 20 have resulted in the deposition of building debris, including massive concrete structures, metal debris, and rubble on the former mill floor and surrounding grade;
- The abandoned nature of the facility has resulted in the disposal of household and solid wastes at various locations of the property; and
- Surface soil samples collected from the site identified several locations where chemical concentrations exceeded RDCC and Particulate Soil Inhalation Criteria (PSIC).

3.8.2 Review of Existing Site Information

The following information was gathered from reviewing U.S. EPA and MDEQ files related to the Tamarack City Stamp Mill:

- 2001 BEA: Upper Peninsula Engineers and Architects (UPEA) conducted a BEA on behalf
 of Osceola Township in fall 2001. Samples collected during the BEA were analyzed for
 inorganic content and a combination of VOCs, SVOCs, polycyclic aromatic hydrocarbons
 (PAHs), and/or PCBs/pesticides. The BEA included five surficial soil samples, three of
 which were within the site boundaries. Two of the three on-site locations exceeded RDCC
 and/or PSIC.
- 2001 BFRA: MDEQ conducted a BFRA that included collection of 25 surficial soil samples; 53 analyses by XRF; 10 soil borings; and six groundwater samples from temporary monitoring wells. Samples collected for laboratory analysis were analyzed for VOCs, SVOCs, inorganic parameters, and PCB/pesticides. Six of the surface soil sampling locations contained concentrations of arsenic, lead and/or benzo(a)pyrene that exceeded RDCC. No exceedances of either RDCC or PSIC were noted in the subsurface soil samples. Five of the 19 XRF readings collected for soils exceeded RDCC and/or PSIC. Many of the 44 XRF readings collected for site structures exceeded RDCC and/or PSIC. Samples collected from five of the six temporary monitoring wells exceeded Part 201 Groundwater/Surface Water Interface (GSI) and/or Residential and Commercial I Drinking Water criteria.
- **2005 WESTON Data Review:** WESTON conducted a review of the BEA and BFRA to evaluate the threats posed by conditions at the site (*Technical Memorandum Tamarack City Stamp Mill Site Analytical Data Review and Evaluation*, WESTON, March 2005). Based on the data review, it was evident that surface soils and standing structures were the main media of concern at AOI 20. This determination was based on contaminant concentrations at the surface above RDCC and PSIC.
- **2005 Biddable Specifications Package:** WESTON prepared biddable specifications in 2005 on behalf of MDEQ to address the site hazards (*Project Manual Interim Response Hazard Mitigation*, WESTON, August 2005). However, due to funding constraints, hazard mitigation measures have not been implemented.

Because sufficient information about AOI 20 was available in the MDEQ and U.S. EPA files, no additional AA field work was conducted at this AOI.

3.9 AOI 21 – HUBBELL BEACH AND SLAG DUMP

3.9.1 Site Description

There are two areas associated with AOI 21: Hubbell Beach and the Hubbell Slag Dump (**Figure 6**). The Hubbell Beach area, which is part of a Township Park that includes a boat launch, docks, and a playground, was not part of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts. The area constitutes a new AOI based on MDEQ reports of industrial and household dumping on the lake bottom adjacent to the beach, and direct discharge of residential sewage from local homes via piping to the northeast lobe of the stamp sand beach. The Hubbell Slag Dump and surrounding area, located adjacent to the Hubbell Beach, was addressed during previous U.S. EPA remedial efforts via the placement of a vegetative cover.

3.9.2 Review of Existing Site Information

Hubbell Beach

The Hubbell Beach area was not part of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts. WESTON START did not identify any existing information pertaining to the Hubbell Beach portion of AOI 21.

Hubbell Slag Dump

The Hubbell Slag Dump and surrounding area, located adjacent to the Hubbell Beach, was addressed during previous U.S. EPA remedial efforts via the placement of a vegetative cover as part of the Torch Lake NPL Site remedy. The planned U.S. EPA remedial activities are summarized in the Torch Lake NPL Site ROD, and a summary of the completed Torch Lake remedial action is provided in the *Superfund Preliminary Site Closeout Report, Final Remedial Action for Torch Lake Superfund Site, Houghton County, Michigan* (U.S. EPA, 2005). A comprehensive Remedial Action Completion Report is being compiled by the U.S. EPA Remedial Program at this time. Therefore, the extent of remediation of these mining-waste deposits via the placement of the vegetative cover is not restated here.

Review of existing information also indicated that the U.S. DHHS completed a health consultation for Torch Lake (March 23, 1998) that concluded that the "Hubbell Slag area should

be further evaluated before any residential development is carried out there to determine the extent and appropriate treatment of the elevated lead and arsenic concentrations in the soil."

3.9.3 Summary of Field Activities

WESTON START performed the AA at the Hubbell Beach and Slag Dump (AOI 21) on September 11, 2007. Black staining was present on the Hubbell Beach and WESTON START observed stamp sands migrating out from under the cap at the Hubbell Slag Dump. The black staining on the beach was approximately ten-feet in length, less than 1/5 inch in thickness, contained no odor, and appeared to be transitory in nature (washed up organic and/or broken up rock material).

3.9.4 Summary of XRF Results

Three locations on the shoreline were screened with an Innov-X 4000 XP/Auto XRF: the black staining on the beach, a pile of soil near the beach, and exposed stamp sands flowing out from under the cap at the former slag dump (HubbellB-2, HubbellB-3, and HubbellB-4, respectively) (**Figure 6**). No metals concentrations exceeded RDCC criteria (**Table 7**).

3.9.5 Summary of Laboratory Results

No laboratory analytical samples were collected at AOI 21.

3.10 AOI 22 – HUBBELL DOCKS, MINERAL BUILDING, AND C&H SMELTER

3.10.1 Site Description

There are three parcels associated with AOI 22: the Hubbell Dock, the Mineral Building, and the C&H Smelter (**Figure 7a**). Each parcel is described individually below.

Hubbell Dock

The Hubbell Dock property consists of approximately three to four acres of vacant land that contains surface debris such as scrap metal, wood, some fire brick, minor amounts of stamp sand, and coal pieces which are approximately one to two inches in diameter (NRCS, U.S. EPA, and MDEQ site inspections, 2002). The coal pieces comprise approximately 60% to 70% of the

on-site debris. The most prominent feature on the property is a massive, solid concrete retaining wall approximately 900 feet long and four feet thick running along the edge of Torch Lake. The concrete wall is speculated to be the remnant of a platform or building foundation that was intended for the unloading of coal from ships which were docked at a historical wooden dock built directly adjacent to the wall. All that remains of the dock are several wooden pilings protruding just above the surface of the water.

Mineral Building

The Mineral Building and associated property contains a dilapidated building, debris, empty drums, ash, newer construction-related debris, slag, and stamp sands. Railroad rails that run into the second story of the building were likely used for dumping loads into large concrete bins located inside.

C&H Smelter

The location of the former C&H Smelter is now an operating industrial facility and an AA was not undertaken at the site.

3.10.2 Review of Existing Site Information

There are three parcels associated with AOI 22 that were addressed during previous U.S. EPA remedial efforts: the Hubbell Dock, the Mineral Building, and the C&H Smelter. Each parcel is addressed individually below.

Hubbell Dock

Historically, the Hubbell Dock property was used for receiving coal from ships in the early part of the twentieth century. The coal was needed to generate power for area milling and smelting operations such as the C&H Smelter. In 1993, the Hubbell Dock property was purchased by Buchanen Forest Products, Inc., for use as a timber loading dock. In summer 1993, a large commercial vessel (approximately 500 feet long) entered Torch Lake and tied up alongside the former coal dock to take on a large load of timber for transport to Canada. This was the only attempt at timber shipping from the property by its current owner that U.S. EPA is aware of and

the owner does not anticipate any future attempts at shipping timber in a similar way because it proved to be cost prohibitive (conversation with Ken Buchanen, 2002).

The Hubbell Dock was previously evaluated by U.S. EPA and a No Action Alternative was selected. WESTON START reviewed a November 22, 2002, memorandum prepared by the U.S. EPA Remedial Project Manager that documented the No Action Alternative. In summary, the memorandum indicated that the Torch Lake NPL cleanup remedy primarily addresses the negative ecological effects on area water bodies as a result of more than a century of copper mining, milling, and smelting activities in the area. The most significant ecological effect is the degradation of the benthic community in area water bodies as a result of past and current metal and particulate-matter surface water loadings from mining wastes, including stamp sand, located on land along and near area water bodies. Benthic communities include lake-bottom dwelling organisms that are a very important part of a complex food web in lakes. The U.S. EPA cleanup decision for terrestrial portions of the site is documented in the September 30, 1992, U.S.EPA ROD.

From 1998 through 2000, during the design and construction phases of the Hubbell/Tamarack portion of the NPL project, NRCS and U.S. EPA evaluated the need for cover material at the Hubbell Dock property. At that time, the USDA-NRCS determined, and U.S. EPA concurred, that the concrete dock wall was highly stable and would be more than adequate to prevent wave erosion from affecting the land behind it. In addition, the NRCS did not observe any wind erosion and/or surface water erosion into Torch Lake from the coal dock property at that time.

However, in 2002, U.S. EPA and USDA-NRCS re-examined the need for cover material at the coal dock property. Additional site inspections were conducted on July 24, 2002, by USDA-NRCS personnel, and on October 8, 2002, by USDA-NRCS, U.S. EPA, and MDEQ personnel. Results of these site inspections include:

• July 2002 Site Inspection – USDA-NRCS noted the general composition and relatively large size of surface debris on site, including coal, and concluded that the surface debris would not likely be subject to wind erosion. In addition, USDA-NRCS advanced soil borings through the debris throughout the site and observed native soil within six to ten inches of the ground surface. However, USDA-NRCS also noted surface runoff channels on site that could potentially carry contamination into Torch Lake.

• October 2002 Site Inspection – USDA-NRCS, U.S. EPA, and MDEQ evaluated the surface runoff channels more carefully and concluded that surface water runoff from the property did not enter Torch Lake. In addition, the agencies confirmed the presence of only a thin layer of surface debris, composed mainly of coal pieces and only minor amounts of stamp sand. MDEQ collected and analyzed two soil samples from the coal dock property during the inspection, and results indicated that no significant contamination was present in site surface soils. Based on the observations and sampling results, the agencies concluded that the volume of waste material present in site surface soils is not significant enough to be a considerable contaminant source to Torch Lake.

Based on the information above, U.S. EPA concluded that the potential for the Hubbell Dock property to contribute to the degradation of the benthic community in Torch Lake was not high enough to justify taking a Superfund remedial action at the property consistent with the 1992 ROD. In addition, given the limited volume of waste material on the coal dock property and the fact that no significant contamination was detected in the two soil samples collected by MDEQ, U.S. EPA decided not to pursue institutional controls on the property.

Mineral Building

Soil contamination at the Mineral Building and surrounding area was addressed during previous U.S. EPA remedial efforts via the placement of a vegetative cover along the shoreline portion of the property as part of the Torch Lake NPL Site remedy. The planned U.S. EPA remedial activities are summarized in the Torch Lake NPL Site ROD, and a summary of the completed Torch Lake remedial action is provided in the *Superfund Preliminary Site Closeout Report, Final Remedial Action for Torch Lake Superfund Site, Houghton County, Michigan* (U.S. EPA, 2005). A comprehensive Remedial Action Completion Report is being compiled by the U.S. EPA Remedial Program at this time. Therefore, the extent of remediation of these mining-waste deposits via the placement of the vegetative cover is not restated here.

During the remedial action, the land surface of the property between the Mineral Building and U.S. EPA-covered shoreline area was not covered. Based on a September 2007 telephone conversation between WESTON START and representatives for the current property owner, the rationale for not covering this area could not be ascertained. Review of existing information also indicated that the current property owner completed and submitted a Category S BEA to MDEQ in May 2000. No significant findings were documented in the partial copy of the BEA that was available for review.

C&H Smelter

The C&H Smelter and surrounding area was addressed during previous U.S. EPA remedial efforts via the placement of a vegetative cover along the shoreline portion of the property as part of the Torch Lake NPL Site remedy. The planned U.S. EPA remedial activities are summarized in the Torch Lake NPL Site ROD, and a summary of the completed Torch Lake remedial action is provided in the *Superfund Preliminary Site Closeout Report, Final Remedial Action for Torch Lake Superfund Site, Houghton County, Michigan* (U.S. EPA, 2005). A comprehensive Remedial Action Completion Report is being compiled by the U.S. EPA Remedial Program at this time. Therefore, the extent of remediation of these mining-waste deposits via the placement of the vegetative cover is not restated here.

The remainder of this area is currently an operating industrial facility. WESTON START did not identify any existing information pertaining to the unremediated portion of AOI 22.

3.10.3 Summary of Field Activities

Hubbell Dock

The Hubbell Dock area was not accessed during the AA.

Mineral Building

WESTON START performed the AA at the Mineral Building on September 7, 2007. The AA was limited to select areas of the interior of the building, as the first story of the building was locked and the majority of the second story was unsafe to traverse. The concrete bins observed inside the building were stained green and blue on their interior walls. Similar discoloration had been observed on copper- and lead-based material previously screened during the AA.

Stained and potentially contaminated materials that were present in the building included light-colored soil, red-stained stamp sands, gray stamp sands, gray slag, white powder, brown-stained soil, ash, and yellow-stained soil. The red-stained stamp sand area was located near a small concrete vault east of the building. Other features that were documented during the AA include:

• Poor site security;

- Empty drums;
- Potential roofing ACM scattered on the property in a 100-foot radius of the building in all directions;
- Numerous debris piles;
- Evidence of household-waste dumping;
- Building paint that is likely lead-based;
- A concrete vault on the east side of the building that contains water and metal debris or a drum;
- A pipe exiting the south side of the building that is wrapped with insulation that may be ACM, and additional wrapped piping in the first story of the building that may be ACM;
- A small, red sandstone building located east of the Mineral Building that had one open door and a pile of white powder inside (MineralB-9, exceeds RDCC for arsenic) and white ceiling tiles and brackets;
- A large drainage ditch discharging to Torch Lake;
- Three large-diameter pipes (approximately 12-inches) at the shoreline that appear to be discharging from the Mineral Building;
- Piles of railroad tiles near the shoreline; and
- A large pile of green brick just south of the property boundary.

C&H Smelter

Access was not obtained and no AA took place at the former C&H Smelter as it is now an operating industrial facility.

3.10.4 Summary of XRF Results

Hubbell Dock

No XRF screening was conducted at the Hubbell Dock.

Mineral Building

Ten locations inside the building were screened with an Innov-X 4000 XP/Auto XRF (**Table 8**). Eight locations exhibited metal concentrations greater than RDCC (**Figure 7b**). Metal exceedances included iron, copper, arsenic, antimony, and lead. Screening locations MineralB-5, MineralB-6, and Mineral B-7 were located in red-stained stamp sand near a small concrete

vault east of the Mineral Building. This area, estimated to be 163 square feet, contained numerous metals above RDCC. Screening location MineralB-11 was ash-like in nature, and concentrations of copper, arsenic, and lead exceeded RDCC. Screening location MineralB-9, located inside the small, red sandstone building east of the Mineral Building, contained a pile of white powder with a concentration of arsenic greater than RDCC.

C&H Smelter

No XRF screening was conducted at the former C&H Smelter property.

3.10.5 Summary of Laboratory Results

Mineral Building

Samples were collected for laboratory analysis at two of the ten locations screened by XRF (MineralB-6 and MineralB-11):

- As determined by the laboratory, soil at location MineralB-6 contained copper, arsenic, and lead at concentrations greater than RDCC. These were the same metals that exhibited concentrations greater than RDCC during XRF screening in the field. However, the concentration of iron also exceeded RDCC during XRF screening.
- As determined by the laboratory, soil at location MineralB-11 contained arsenic concentrations greater than RDCC. However, XRF screening indicated that concentrations of arsenic, copper, and lead exceeded RDCC. Concentrations of metals were lower in the laboratory results than the XRF screening results, however at the same order of magnitude. The different results may be due to inaccuracies associated with the capabilities of the XRF screening method for samples containing many metals or the heterogeneous nature of many of the samples collected during the AA.

PCBs were analyzed in two samples from AOI 22: Mineral XRF6, collected from screening location MineralB-6; and Mineral XRF11, collected from screening location MineralB-11. All results were less than RDCC.

3.11 AOI 12 – LAKE LINDEN SANDS

3.11.1 Site Description

The Lake Linden Sands AOI (AOI 12) is comprised of the Lake Linden Recreation Park (LLRP) and the Houghton County Historical Museum, in Lake Linden, Houghton County, Michigan

(**Figure 8a**). The LLRP is a publicly owned recreational area located at the north end of Torch Lake at M-26, in a delisted portion of the Torch lake NPL Site. The LLRP and the Houghton County Historical Museum encompass the former locations of the Lake Linden Reclamation Plant, the Lake Linden Leach Plant, the Calumet Stamp Mill, and the Municipal Dump.

The Former Calumet Stamp Mill is now the Houghton County Historic Museum. A portion of the site has been redeveloped to incorporate historic buildings and equipment into the museum. The portion of the property not modified contains exposed foundation materials from the Former Calumet Stamp Mill facility, debris, empty drums, slag, coal, piles of railroad tiles, and exposed stamp sands.

The entire Lake Linden Sands AOI is associated with historic mine waste in the form of stamp sands and mining-era industrial waste. As part of the Torch Lake NPL Site remedy, stamp sands were capped along the entire Torch Lake shoreline up to the water's edge. The low lake levels experienced in the area during 2007 (lake levels are down one to two feet) have exposed stamp sands and other potential waste material that were previously submerged.

3.11.2 Review of Existing Site Information

MDEQ and U.S. EPA visited the Lake Linden Sands site during the week of June 18, 2007 as part of the Five Year Review Inspection and Site Visit. While on site, they observed and subsequently sampled clayey material located on the shoreline in the LLRP. Analytical results indicated the following contaminants were present in the sample:

- PCBs − 12 mg/kg;
- TAL metals –antimony (600 mg/kg), arsenic (45 mg/kg), barium (120,000 mg/kg), copper (81,000 mg/kg), and lead (78,000 mg/kg). Concentrations of these metals exceeded RDCC. Concentrations of barium, cadmium, chromium, lead, and selenium were high enough that MDEQ suspected the material sampled may be considered a hazardous waste under 40 CFR 261.24.

MDEQ presented a report of analytical data to U.S. EPA documenting recognized environmental concerns at the site on July 25, 2007.

U.S. EPA tasked WESTON under the START Contract to mobilize to the site on July 25, 2007, to investigate the concerns presented by MDEQ. On July 26, 2007, WESTON START collected

two samples of the white, clayey substance located west of the LLRP swimming beach to confirm the findings of the MDEQ investigation. On July 30 and 31, 2007, WESTON START set up a 100-foot by 100-foot sampling grid along the shoreline at the LLRP and collected soil samples within each grid. More than 70 soil samples were collected. Two water samples, one surface water sample from a tributary to Torch Lake and one groundwater sample on the beach, were also collected on July 26, 2007. Analytical results are summarized in **Attachment E**.

During reconnaissance, an additional area along the shoreline beyond the lead-contaminated area discovered by MDEQ, was delineated. This area, designated the arsenic area, was a discolored area approximately 250 feet north of the marina near the shoreline. Two additional samples were collected at 0-3 inches below ground surface (bgs) and 18 inches bgs at this location. The concentration of arsenic in the surface sample was 65 mg/kg and in the subsurface sample was less than the detection limit.

On August 5, 2007, U.S. EPA tasked WESTON under the START Contract to mobilize to the site to perform oversight during the U.S. EPA removal of soil at both the lead- and arsenic-contaminated areas (**Attachment E**). Approximately 1,000 cubic yards (CY) of soil were excavated from the lead-contaminated area and 10 CY from the arsenic-contaminated area.

On August 7, 2007, as part of the removal action, WESTON START utilized the U.S. EPA research vessel Mudpuppy to collect eight sediment samples from the bottom of Torch Lake near the deposit of "clayey" material sampled earlier. Sampling locations and results are presented in **Attachment E**.

3.11.3 Summary of Field Activities

WESTON START performed reconnaissance and XRF screening activities at the Former Calumet Stamp Mill portion of AOI 12 on September 10, 2007. U.S. EPA FIELDS performed reconnaissance and XRF screening of exposed stamp sands along the northern portions of Torch Lake within AOI 12 on September 12, 2007 in areas not assessed during the U.S. EPA emergency response action.

3.11.4 Summary of XRF Results

U.S. EPA FIELDS screened six locations of exposed stamp sands along the northern portions of the Lake Linden Sands with an Innov-X 4000 XP/Auto XRF (LL-2-1 through LL-2-6). None of the locations contained metals concentrations greater than RDCC (**Table 9**).

WESTON START screened four locations at the Former Calumet Stamp Mill with an Innov-X 4000 XP/Auto XRF. Screening locations included stamp sands (CalumetB-15), black-stained soil (CalumetB-16), and a coal pile (CalumetB-17). The black-stained soil exhibited lead concentrations greater than RDCC (**Table 9**). **Figure 8a** shows the area of black-stained soil, and a sample of the material was submitted to the laboratory for confirmation analysis.

3.11.5 Summary of Laboratory Results

A sample was collected for laboratory analysis of metals at one of the four locations screened with an XRF by WESTON START during the AA (CalumetB-16). Laboratory results indicated that concentrations of arsenic and lead in the sample were greater than RDCC. Only the concentration of lead exceeded RDCC during XRF screening. Both lead and arsenic concentrations were significantly greater as a result of laboratory analysis than XRF screening. Again, this is likely due to the variation between the analytical methods and the heterogeneous nature of the soils in the area.

PCBs were analyzed in one sample from AOI 12; CalumetXRF-16, from screening location CalumetB-16. All results were non-detect.

3.12 AOI 23 – C&H POWER PLANT

3.12.1 Site Description

The C&H Power Plant AOI, also known as the Former Calumet & Hecla Power Plant, is a 14-acre property that contains a dilapidated power plant building (C&H Power Plant), exposed foundation materials (Former Hecla Stamp Mill), debris, empty drums, ASTs, slag, and exposed stamp sands (**Figure 8a**). The property was part of a large copper ore processing facility that was in operation for more than a century.

3.12.2 Review of Existing Site Information

In 1999, Coleman Engineering Company (Coleman) performed a Phase I Environmental Assessment (Phase I) at the C&H Power Plant AOI. The Phase I investigation provided the following information about the property:

- Coal ash identified in a pile south and east of the site building (extent not defined) exceeded the MDEQ Default Type A Clean-up Criteria for metals;
- Drums were identified on site Coleman recommended that drum contents be identified and disposed of properly;
- Refractory bricks were identified on site all brick was considered a hazard as it may contain high levels of metals;
- PCB-laden switches, cranes, and other electrical switching devices were likely to be present on site;
- Coleman recommended sampling around the Still House and Filter House to rule out the presence of hazardous substances, including flotation and leaching process chemicals, and boiler treatment chemicals;
- Evidence of several excavations of unknown origin was identified around the power plant. Coleman suggested that waste material may have been dumped in these areas and recommended further investigation;
- The basement of a site building was flooded and considered hazardous Coleman recommended pumping, sampling, and disposal of water in the basement;
- Coleman recommended further investigation and sampling of waste and debris piles;
- Coleman suggested that bags of copper concentrate may be releasing contents to the environment and warrant further investigation;
- Historic data indicated that a spill of 27,000 gallons of cupric ammonium carbonate was discharged to Torch Lake in 1972;
- Residual coal was identified in a coal silo on site; and
- The condemned site building was identified as "Dangerous and Unsafe" and Coleman recommended that the building be razed and the debris properly disposed.

In 1999, Coleman also performed a Phase II Environmental Assessment (Phase II) at the site. The main focus of the Phase II was to sample the ash pile found south and east of the C&H Power Plant. Concentrations of arsenic, barium, chromium, copper, lead, selenium, silver, and zinc exceeded MDEQ Default Type A Clean-up Criteria (statewide default background criteria).

On August 8 and August 10, 2007, MDEQ collected a total of two samples of sediment at the C&H Power Plant. One sample was analyzed for metals and base-neutral acids (BNA), the other for PCBs. No results exceeded RDCC.

3.12.3 Summary of Field Activities

WESTON START performed reconnaissance and XRF screening activities at the C&H Power Plant AOI on September 5, 2007. The owner of the property was present during the AA within the building and provided information to WESTON START personnel regarding the site. The property owner stated that all ACM was removed from the building with the exception of the roofing material. In addition, the property owner stated that the transformers located on the west side of building had been removed and soil sampling verification occurred following their removal. The owner refused to allow sample collection during the AA, but did permit real-time screening with the XRF unit.

Other features that were documented inside the C&H Power Plant building during the AA include:

- Roofing ACM;
- Suspect lead-based paint;
- Light ballasts that likely contain PCBs and mercury;
- Piles of coal;
- Piles of debris;
- A large piece of equipment on the eastern side of the building that contains an oil gauge and possibly oil;
- A drum containing tar-like material located in the south-central portion of the building; and
- Three additional drums in the flooded basement where an obvious sheen was located; one drum was submerged and the other two drums appeared to be floating.

Additional site reconnaissance at the C&H Power Plant provided the following information:

- A storm drain runs along the east side of the property along M-26;
- A former transformer pad is located on the east side of the building;
- An AST is located south of the building (more recent origin, gauge showed empty);
- There is evidence of trespassing and vandalism on site;

- There is evidence of household-waste dumping on site;
- There is evidence of recreational use near the shoreline;
- Exposed stamp sands are present along the southern edge of the property;
- The majority of the shoreline is lined with rock/brick debris and rip-rap;
- "No Trespassing" and "Keep Out" signs are posted on the northern shoreline and amongst building ruins along the shoreline; however, a walking trail is also present;
- Nearby buried utilities had recently been flagged perpendicular to M-26 between M-26 and the south side of the Mineral Building (AOI 22);
- A three-inch polyvinyl chloride (PVC) stick-up pipe was identified at the southeast of the site building; and
- There are recreational areas located north and south of the site boundaries along the shoreline, including at a residence south of the site.

3.12.4 Summary of XRF Results

WESTON START screened 13 locations with an Innov-X 4000 XP/Auto XRF (**Table 10**). Seven locations had concentrations of the following metals greater than RDCC (**Figure 8b**):

- Lead (locations C&H-XRF5, C&H-XRF7, and C&H-XRF13);
- Arsenic (locations C&H-XRF3 and C&H-XRF11);
- Copper (locations C&H-XRF7, C&H-XRF12, and C&H-XRF13); and
- Iron (location C&H-XRF6).

XRF screening at locations C&H-XRF7 and C&H-XRF12 was conducted inside bags labeled "Copper Concentrate". Screening location C&H-XRF7 was part of a pile of bags approximately 30 feet long by 10 feet wide and location C&H-XRF12 was within a pile of bags located on a palette (four feet by eight feet) along the shoreline.

3.12.5 Summary of Laboratory Results

No laboratory analytical samples were collected at this AOI.

3.13 AOI 24 – BACKWATER AREA OF TORCH LAKE

3.13.1 Site Description

The Backwater Area of Torch Lake is a newly identified AOI and includes the surface water and exposed stamp sands along the western, northern, and eastern shoreline areas that were not part

of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts (**Figure 9a**).

3.13.2 Review of Existing Site Information

The southern shoreline of the Backwater Area of Torch Lake was remediated by U.S. EPA via the placement of a vegetative cover as part of the Torch Lake NPL Site remedy. The planned U.S. EPA remedial activities are summarized in the Torch Lake NPL Site ROD, and a summary of the completed Torch Lake remedial action is provided in the *Superfund Preliminary Site Closeout Report*, *Final Remedial Action for Torch Lake Superfund Site*, *Houghton County*, *Michigan* (U.S. EPA, 2005). A comprehensive Remedial Action Completion Report is being compiled by the U.S. EPA Remedial Program at this time. Therefore, the extent of remediation of these mining-waste deposits via the placement of the vegetative cover is not restated here.

WESTON START did not identify any existing information pertaining to the unremediated areas.

3.13.3 Summary of Field Activities

U.S. EPA FIELDS performed reconnaissance and XRF screening of exposed stamp sands along the northern portions of Torch Lake on September 12, 2007 (**Figure 9b**).

3.13.4 Summary of XRF Results

U.S. EPA FIELDS screened four locations along the northern portions of Torch Lake with an Innov-X 4000 XP/Auto XRF (**Table 11**). One screening location, LL-2-8, exhibited arsenic concentrations in soil greater than RDCC (**Figure 9b**).

3.13.5 Summary of Laboratory Results

A sample was collected for laboratory analysis at one of the four locations screened by U.S. EPA FIELDS (LL-S2-8). As determined by laboratory analysis, all metal concentrations in the sample were below RDCC. However, XRF screening results indicated that the sample contained arsenic at a concentration greater than RDCC (9 mg/kg). Laboratory analysis indicated the sample contained 1.1 mg/kg arsenic.

44

PCB concentrations in sample Lake Linden S2-8, collected at screening location LL-S2-8, were non-detect.

3.14 AOI 25 – TRAPROCK SLAG DUMP

3.14.1 Site Description

The Traprock Slag Dump is a new AOI and includes open areas with slag boulders and an area, reportedly, previously used for transformer disposal. These areas were not part of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts (**Figure 9a**).

3.14.2 Review of Existing Site Information

A review of MDEQ file information indicated that on June 23, 2003, the U.S. Army Corps of Engineers (USACE) and the MDEQ RRD conducted a site inspection on the subject property and concluded that "clinker material" containing concentrations of contaminants exceeding Part 201 GRCC for soil was being spread over large portions of the property. Reportedly, the waste was being excavated from the south side of the site, broken up (subsequently increasing its surface area and potential leachability) and spread over an approximately three-acre portion of the site. This waste material was observed in the surface water, wetland, and floodplain portions of the site, as well as other off-site properties. In addition to the waste material on site, inspectors observed that demolition debris had been burned on site and a new pile of debris was being built-up for what appeared to be another burn. The MDEQ RRD staff also noted the presence of numerous five-gallon buckets and drums filled with what appeared to be waste oil. One bucket did not have a lid and had filled with water causing the contents to spill onto the ground. Petroleum stains were present on the ground surface.

3.14.3 Summary of Field Activities

WESTON START personnel performed the AA at the Traprock Slag Dump AOI on September 11, 2007. This AOI includes open areas with slag boulders, slag piles, woody debris, cinders, a former municipal dump, unknown green/blue salt, and stamp sands.

3.14.4 Summary of XRF Results

WESTON START screened 10 locations with an Innov-X 4000 XP/Auto XRF (**Table 12**). One location, TraprockB-10, a stamp sand area, contained arsenic concentrations greater than RDCC (**Figure 9b**). No other metals were detected at concentrations greater than RDCC. WESTON START presented a green/blue, crystalline sand sample, TraprockB-14, to MDEQ for further analysis per the U.S. EPA OSC's request.

3.14.5 Summary of Laboratory Results

Samples were collected and submitted for laboratory analytical verification from two of the 10 XRF screening locations, TraprockB-10 and TraprockB-8. Neither sample submitted for laboratory analysis exhibited metal concentrations greater than RDCC. These results are consistent with the XRF screening results for the same locations.

Samples were collected for PCB analysis at AOI 25 screening locations TraprockB-8 and TraprockB-12. All results were non-detect.

3.15 <u>AOI 26 – BOOTJACK STAMP SANDS</u>

3.15.1 Site Description

According to MDEQ, re-handling of stamp sand in the Lake Linden area resulted in a large accumulation of stamp sand deposits at the head of Torch Lake (**Figure 9a**). This area was not part of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts and constitutes a new AOI based on the presence of stamp sand.

3.15.2 Review of Existing Site Information

WESTON START did not identify any existing information pertaining to AOI 26.

3.15.3 Summary of Field Activities

WESTON START personnel performed the AA at AOI 26 on September 11, 2007. The site was comprised of wooded and grassy areas and lesser areas with exposed stamp sands. No large piles or accumulations of stamp sands were observed.

3.15.4 Summary of XRF Results

WESTON START screened two locations with an Innov-X 4000 XP/Auto XRF (**Table 13**). No metals were detected at concentrations greater than RDCC.

3.15.5 Summary of Laboratory Results

A sample was collected and submitted for laboratory verification analysis from one location, BootjackB-17. This sample was not screened with an XRF because it was raining heavily during the AA. No metals concentrations were detected greater than RDCC at BootjackB-17.

A sample was also collected for PCB analysis at location BootjackB-17. All results were non-detect.

3.16 AOI 14 – GAY STAMP SANDS

3.16.1 Site Description

Copper mining activities conducted between 1890 and 1920 in the Village of Gay, Keweenaw County, Michigan resulted in the generation of approximately 37.3 million CY (mcy) of stamp sand that was placed in or along Lake Superior near the Village of Gay. A byproduct of copper extraction, stamp sand contains heavy metals at concentrations that may pose a risk to aquatic organisms. Herein, the definition of the Gay Stamp Sands site (AOI 14) includes the following features (**Figure 10a**):

- The original stamp sand deposit (original deposit) located near the former Village of Gay, Michigan copper stamping mill (former Gay mill); and
- Approximately 5.3 miles of shoreline that begins at the original deposit and continues southerly to the Traverse River harbor breakwall. This stretch of shoreline has been covered by stamp sand due to migration from the original deposit.

It is estimated that the original deposit is receding at a rate of 8.0 meters per year (26.0 feet per year).

Currently, widespread reuse for road traction, as well as recreational and construction use of the stamp sand occurs throughout the Keweenaw Peninsula. It is also expected that the migrating stamp sand will eventually bypass the Traverse River harbor and deposit on the currently

unaffected beach south of the breakwall. Beneficial use impairments may include degradation of fish and wildlife habitat, degradation of the benthos, and degradation of aesthetics.

This area was not part of the Torch Lake NPL Site and therefore not part of previous U.S. EPA remedial efforts and constitutes a new AOI based on the presence of stamp sand.

3.16.2 Review of Existing Site Information

As of 2007, several studies were conducted for the Gay Stamp Sands by MDEQ and USACE:

- 2001 USACE Quantification and Fate Study: In this study, the location and quantity of stamp sand was determined at three sites including the Gay Stamp Sands Site. An analysis of current and historic aerial photography in conjunction with an analysis of bathymetric data was performed to determine the aerial extent of stamp sand migration. The volume of stamp sand in the littoral system and the rate at which the stockpiles erode was determined using similar methods. Lastly, several mitigation alternatives at each study area were presented with the purpose of preventing further movement of the stamp sands. These alternatives included structural solutions such as stone revetments, steel sheet-pile bulkheads and groins, and non-structural approaches such as dredging, capping, and bioengineering as summarized in the *Quantification and Fate of Keweenaw Stamp Sand* (USACE, Detroit District, December 2001).
- September 2003 MDEQ RRD Pre-remedial Unit of the Superfund Section and the RRD Geological Services Unit (GSU): MDEO collected 274 soil samples from the northern deposit area and 24 soil samples from the southern deposit area at the Gay Stamp Sands site. MDEQ also collected 10 groundwater samples from the northern deposit area for analysis of both dissolved and total metals to evaluate the effects of stamp sand on surface water. MDEQ compared the soil and groundwater sampling results to Part 201 criteria and provided a summary in MDEQ Interoffice Communication (MDEQ, May 2004). According to MDEQ Interoffice Communication, none of the samples collected from the southern area exceeded the RDCC for any of the metals. One sample out of 274 samples collected from the northern area exceeded RDCC for arsenic. One out of 274 samples collected from the northern area exceeded the generic Commercial/Industrial PSIC for manganese. MDEQ also compared groundwater sampling results for dissolved metals to Part 201 Residential/Commercial I Drinking Water Criteria. Aluminum and manganese were detected above Residential/Commercial I Drinking Water Criteria in several of the samples.
- 2004-2006 WESTON Toxicological Evaluation: WESTON prepared a Toxicological Evaluation for the Gay stamp sands in response to a request from the MDEQ RRD in 2004 (Toxicological Evaluation for the Gay, Michigan Stamp Sand [WESTON, September 2006]). The purpose of the Toxicological Evaluation was to evaluate the potential for exposure to stamp sand contaminants in reuse scenarios, including road traction, recreational, and construction uses. WESTON assessed the effects on human health and aquatic systems in each scenario. The results of the Toxicological Evaluation

indicated the stamp sand re-use scenarios posed acceptable risks to human health, with the exception of consumption of groundwater that has contact with stamp sand. However, WESTON determined that the Gay stamp sands posed an unacceptable risk to aquatic organisms based on the bioassay testing as summarized in the Toxicological Evaluation.

- **2004 MDEQ Geophysical Survey:** MDEQ RRD GSU conducted a geophysical survey to assess the depth and quantity of stamp sand extending from the Traverse River breakwall to approximately 4,500 feet north of the breakwall along the Lake Superior Shoreline. Results are summarized in the *Geophysical Investigation Migrating Stamp Sand* (MDEQ January 2005).
- 2004-2007 WESTON Technical Evaluation (TE): WESTON conducted a TE in response to a request from the MDEQ RRD in 2004 (*Migrating Stamp Sand Mitigation Plan, Technical Evaluation* [WESTON, March 2007]). The purpose of the TE was to build on the previous migration mitigation study conducted by USACE and develop alternatives to preclude further erosion of the original stamp sand deposit, and ensure the unaffected, clean beach south of the Traverse River harbor breakwall is not contaminated by the southward migration of eroded stamp sand. The TE included the review of existing data; completion of hydrographic and limited topographic surveys; development of alternatives; hydrodynamic modeling analysis; and evaluation of alternatives. The recommended alternative to carry over into final design was the least-cost alternative, which included construction of a revetment at the original deposit and implementation of maintenance dredging.

3.16.3 Summary of Field Activities

WESTON START performed reconnaissance and XRF screening in the historic mining process building ruins at AOI 14 on September 10, 2007. The building ruins contained exposed foundation materials, debris, slag and exposed stamp sands. U.S. EPA FIELDS performed reconnaissance and XRF screening along the shoreline at AOI 14 on September 10, 2007.

Other features that were documented at AOI 14 during the AA include:

- Poor site security;
- Potential roofing ACM present in stockpiles on site; the largest pile is 20 feet by 20 feet by 4 feet;
- Residue from an unknown burned material;
- Evidence of household-waste and other non-mining-related dumping at the site; and
- A structurally compromised chimney stack that may pose a physical hazard.

3.16.4 Summary of XRF Results

WESTON START screened 15 locations in the historic mining process building with an Innov-X 4000 XP/Auto XRF (**Table 14**) and collected three samples for verification via laboratory analysis. All 15 XRF screening locations contained stained material suspected of containing metals. Seven of the 15 screening locations exhibited concentrations of metals greater than RDCC (**Figure 10b**); including seven exceedances for arsenic, four exceedances for copper, two exceedances for silver, one exceedance for lead, and four exceedances for iron. Material exhibiting metal concentrations greater than RDCC included green-stained sands (locations GayB-5, GayB-6, and GayB-11), black-stained soils (locations GayB-8, GayB-14, and GayB-15), and stamp sand (location GayB-12).

U.S. EPA FIELDS screened 38 locations along the shoreline at AOI 14 with an Innov-X 4000 XP/Auto XRF (**Table 14**) and collected one sample for verification via laboratory analysis. No obviously contaminated or stained material was observed during site reconnaissance and screening of stamp sands along the shoreline. Thus, the U.S. EPA FIELDS team screened the stamp sands every one quarter mile along the Gay Stamp Sands shoreline deposit. Three of the 38 samples screened along the shoreline exhibited concentrations of arsenic greater than RDCC (**Figure 10c**) (locations GAY-S1-07, GAY-S1-21, and GAY-S1-30).

3.16.5 Summary of Laboratory Results

Three of the 15 WESTON START historic mining building XRF screening locations were verified via laboratory analysis (GayB-6, GayB-11 and GayB-14):

- Laboratory results for the sample collected at location GayB-6 indicated the sample contained copper and arsenic at concentrations greater than RDCC. XRF screening of this location exhibited copper, arsenic, and silver concentrations greater than RDCC. The silver concentration at location GayB-6 determined during XRF screening was approximately ten times greater than the laboratory analytical result.
- Laboratory results for the sample collected at location GayB-11 indicated the sample contained copper and arsenic at concentrations greater than RDCC. XRF screening of the soil yielded similar results.

 Laboratory results for the sample collected at location GayB-14 indicated the sample contained concentrations of arsenic and lead greater than RDCC. XRF screening of the soil yielded similar results.

WESTON START also collected samples for PCB analysis at locations GayB-6, GayB-11, and GayB-14. All results were non-detect.

One of the 38 locations screened with an XRF along the shoreline by the U.S. EPA FIELDS team was verified via laboratory analysis (GAY-S1-21). Laboratory results indicated that no metals were present in the sample at concentrations that exceeded RDCC. According to results of XRF screening at location Gay-S1-21, arsenic concentrations exceeded RDCC. The concentration of arsenic as determined by XRF screening was 9 mg/kg, and as determined by laboratory analysis was 0.67 mg/kg.

The U.S. EPA FIELDS team also collected a sample for PCB analysis at location Gay-S1-21. All results were non-detect.

3.17 <u>WESTERN SHORELINE OF TORCH LAKE</u>

3.17.1 Site Description

Multiple areas along the western shoreline of Torch Lake are composed of stamp sand deposits. Historically, these stamp sand deposits have been present as sediments on the lake bottom. Currently, they are present as beach sand due to lake level regression.

3.17.2 Review of Existing Site Information

The planned U.S. EPA remedial activities are summarized in the Torch Lake NPL Site ROD, and a summary of the completed Torch Lake remedial action is provided in the *Superfund Preliminary Site Closeout Report, Final Remedial Action for Torch Lake Superfund Site, Houghton County, Michigan* (U.S. EPA, 2005). A comprehensive Remedial Action Completion Report is being compiled by the U.S. EPA Remedial Program at this time. Therefore, the extent of remediation of these mining-waste deposits via the placement of the vegetative cover is not restated here.

Data collected by the Superfund Section of the MDEQ RRD during 2004 show concentrations of metals above RDCC in submerged sediments.

3.17.3 Summary of Field Activities

All field activity summaries for the sites along the western shoreline of Torch Lake, including XRF and laboratory results and visual observations, are included in the AOI discussions in **Sections 3.1** through **3.16**.

3.18 AOI 27 – DRUMS ON LAKE BOTTOM

3.18.1 Site Description

Drums have been observed on the bottom of Torch Lake and on land at multiple locations, and drum pieces have been observed at various shore locations. It has been long suspected that the drums are associated with historical copper mining operations surrounding Torch Lake.

3.18.2 Review of Existing Site Information

From 1989 through 1991, U.S. EPA conducted underwater and on-shore investigations to evaluate the quantity and contents of drums encountered within Operable Unit 1 (western shoreline of Torch Lake) of the Torch Lake NPL Site. The investigations targeted four areas as follows:

- Area 1 Former C&H Smelter south of Lake Linden near the Hubbell Docks
- Area 2 Former Ahmeek Mill Site (Tamarack City Stamp Mill Site)
- Area 3 Southwest end of the Hubbell Stamp Sands in Tamarack City
- Area 4 Former Quincy Mill near the Mason Stamp Sands

The U.S. EPA investigations consisted of geophysical surveys, remote-operated vehicle (ROV) surveys, underwater dives, and drum sampling of both underwater and on-shore drums. Results of the drum sampling events indicated drum contents ranged from F listed hazardous waste (for on-shore drums) to smelter slag that was determined to be non-hazardous. A letter dated July 25, 1990 from U.S. EPA to the Michigan Department of Health indicated sample results from underwater drums identified a number of tentatively identified compounds (TICs), but no

specific chemicals of concern could be confirmed. Further, the letter indicated that underwater drums that were filmed appeared to have been breached and therefore flooded.

Subsequent to the U.S. EPA investigations, the U.S. EPA issued an Administrative Order on Consent to a Respondent Group to perform specific drum search, removal, and disposal activities for drums located along the western shoreline of Torch Lake in the four previously identified target areas (Areas 1 through 4) as summarized in the *Final Drum Removal Report, Torch Lake Drum Removal* (Geraghty & Miller, March 1992). In summer 1991, the Respondent Group conducted a side sound navigation and ranging (SONAR) scan (SSS) of the five mile reach of the western shoreline of Torch Lake between Lake Linden and the former Quincy Mining Property near the Mason Stamp Sands. The SSS indicated Areas 1 and 4 should be targeted for an ROV survey. The subsequent ROV survey conducted by the Respondent Group indicated many underwater drums were encountered in Area 1 but no drums were encountered in Area 4. Further, the ROV survey indicated many of the drums encountered in Area 1 were empty or contained inert materials such as slag or wood.

The Respondent Group conducted underwater dives to confirm the contents of drums as encountered previously during the ROV survey. The underwater dives confirmed 808 empty drums and 20 drums containing unknown contents in and near Area 1. Empty drums and those deemed to contain inert material such as sediment or slag were left in place.

The effort of the Respondent Group resulted in the following:

- Removal, overpacking, and disposal of 83 drums from on-land locations;
- Removal, overpacking, and disposal of 20 submerged drums from two shallow locations; and
- Out of the 103 drums removed, 97 contained non-hazardous waste, four contained characteristically hazardous waste, and two contained F-listed waste.

In June 2007, MDEQ conducted a SSS of the lake bottom in the vicinity of the Hubbell Docks (vicinity of previous Area 1) and areas to the northeast in Torch Lake. The purpose of this work was to provide the specific locations of the areas of drum disposal on the lake bottom to assist the MDEQ Water Bureau (WB) in collecting sediment samples from these areas; and therefore potentially identify a source of PCB contamination in Torch Lake.

AREA ASSESSMENT RESULTS

While many drums and drum areas were identified during the 2007 MDEQ SSS, many of the identified drums may have been previously investigated and deemed empty or contents inert during the 1991 Respondent Group investigation. Specifically, the 1991 Respondent Group investigation identified 742 empty drums (left in place) in the vicinity of the Hubbell Docks where much of the MDEQ SSS focused.

The Superfund Section of the MDEQ RRD is in the process of preparing a summary report for the June 2007 SSS. MDEQ WB is in the process of preparing a summary report for the sediment sampling conducted in the drum disposal areas.

SECTION 4 FINDINGS AND RECOMMENDATIONS

As previously discussed, the purpose of the Torch Lake AA was to determine if imminent and substantial threats existed and to make recommendations on further assessment. A comprehensive assessment of all environmental hazards known to affect historical industrial properties and structures was not within the scope of the AA. Furthermore, it should be noted that many of the potential environmental issues have been evaluated previously by the MDEQ and the U.S. EPA Remedial Branch.

The following are the recommendations by AOI:

AOI 7 - Quincy Smelter

Previous investigations have shown that hazards exist inside the fenceline at the Quincy Smelter in the form of dilapidated, unstable structures and friable asbestos. Structural conditions on site and proposed stabilization remedies, including cost estimates, are described in detail in three evaluations performed in 2004: Structural Stabilization Work for Asbestos Abatement at the Quincy Smelter Site (U.P. Engineers and Architects, December 2004), Structural Stabilization Report for the Quincy Smelter Site (Metcalf and Eddy, December 2004) and the Quincy Smelter Asbestos Abatement Assessment (WESTON, 2004). Concerns and recommendations, including cost estimates, for the abatement of asbestos-containing materials on site are addressed in the Quincy Smelter Asbestos Abatement Assessment (WESTON, 2004). Recommendations by site structure are provided below. These recommendations should be implemented in conjunction with a final redevelopment plan.

- **Reverberatory Furnace Smokestack** The stack superstructure is heavily deteriorated, and in a dangerous condition. The stack support system is heavily corroded and not providing support. The stack should be stabilized or demolished. This structure does not contain friable asbestos, but does present a safety concern that must be addressed prior to asbestos abatement at the site.
- Building Number 2, Dockside Warehouse This is a two-story wood timber structure. Portions of this building require stabilization, including bracing the bottom of the second floor hoisting shed at the east end, and removing a portion of the collapsed roof of the east side shed to allow access to six unknown drums and any other

FINDINGS AND RECOMMENDATIONS

potentially hazardous materials. This building contains ACM in poor condition in the form of pipe insulation (on piping and in bulk storage), pipe insulation debris, and baseboard seam insulation. ACM debris is present in areas of bulk ACM storage. The ACM should be removed.

- **Building Number 3, Laboratory/Assay House** This single-story wooden farm building has lap siding, a corrugated metal roof with gable ends, and an exterior brick chimney on the west wall. Portions of this building require stabilization, including the top of the brick chimney and the top of the steel chimney and roof braces, and repair is required of the pushed-in and rotted wall at the south side of the lower shed. The building contains ACM in poor condition in the form of pipe insulation in the basement and pipe insulation debris and thermal heat shields on the first floor. The ACM should be removed.
- Building Number 6, Reverberatory Furnace Building This is a large two-story sandstone structure. The building has major burn damage and was determined to be unsafe for further inspection in December 2004. Portions of this building require stabilization, including the chimney stack and existing catwalks. In addition, all rusted-through roofing metal, cupola windows, and any other loose overhead materials should be removed and loose steel wall panels should be reattached. A complete inspection of ACM was not conducted in 2004 due to building conditions, however the *Asbestos Survey Report, Quincy Smelter Facility* (ATC Associates, Inc, June 2004) documented ACM in the form of pipe insulation and duct wrap throughout the building that was in poor condition and should be removed.
- Building Number 7, Reverberatory Furnace Building This large, clear-span, post-and-beam structure has a roof and sides of corrugated metal and major burn damage. This building was determined to be unsafe for further inspection in December 2004. Portions of this building require stabilization including miscellaneous masonry and a three-foot diameter boiler pipe on the north half of building. In addition, all loose and rusted-through roofing metal, cupola windows, and other loose overhead materials should be removed on the north side of the building and all loose stone lintel along the walls of the building should be repaired and the stone window lintel in southwest corner rebuilt. A complete inspection of ACM was not conducted in 2004 due to building conditions, however the *Asbestos Survey Report, Quincy Smelter Facility* (ATC Associates, Inc, June 2004) documented ACM in the form of pipe insulation throughout the building that was in poor condition and should be removed.
- **Slag and Stamp Sand** The nature and extent of slag and stamp sand should be delineated on site. Additional sampling and an evaluation of remediation techniques is recommended for the large on-site slag pile and stamp sand that covers the site.

AOI 15 - Properties Adjacent to Quincy Smelter

It is recommended that the nature and extent of contamination at the former Houghton County Gas & Coke Plant, including two dilapidated structures, slag, coal, a tar vault, ASTs, and

FINDINGS AND RECOMMENDATIONS

exposed stamp sand and tar along the Portage Waterway shoreline be evaluated and a cleanup approach developed.

AOI 16 - Dollar Bay Wire Mill

Access was denied to this operating boat storage yard. A portion of this AOI was addressed via gravel capping as part of the Torch Lake NPL Remedy. No further action is recommended.

AOI 17 - Dollar Bay Well Field

No further action is recommended.

AOI 10 - Mason Sands

No further action is recommended based on current use.

AOI 18 - Building in Mason

It is recommended that the MDEQ issue a due care letter to the property owners regarding the unrestricted access to the building and the potential presence of ACM.

AOI 19 - Former C&H Leach Plant and Hubbell Stamp Sands

Access was denied to the Former C&H Leach Plant which is currently an operating construction company storage yard. Based on MDEQ sampling at the site, it is recommended that access to the property be obtained to further assess the nature and extent of potential contamination.

No further action is recommended for the Hubbell Stamp Sands.

AOI 20 - Tamarack City Stamp Mill

No further action is recommended based on current use. It is recommended that the exposed soil/stamp sand areas be covered and the concrete rubble and debris piles be managed if the property is to become an interpretive center.

AOI 21 - Hubbell Beach and Slag Dump

It is recommended that an underwater investigation be performed to further explore lake bottom debris, the previously installed vegetative cap be repaired, and the MDEQ reported discharge of residential sewage be further assessed.

AOI 22 - Hubbell Docks, Mineral Building, and C&H Smelter

No further action is recommended.

AOI 12 - Lake Linden Sands

It is recommended that the source of the lead sludge removed from the exposed beach area be evaluated.

No further action is recommended for the other areas of the Lake Linden Sands included in the AA.

AOI 23 - C&H Power Plant

It is recommended that the sludge and water in the basement and the drums in the basement be characterized to determine proper management; the bags of copper concentrate near the shoreline be removed; the soil data collected after the removal of transformers containing PCBs be reviewed and additional soil sampling be conducted if necessary; the MDEQ issue the owner a due care letter to complete removal of ACM; and lead-based paint be addressed prior to any demolition or re-construction activities.

AOI 24 - Backwater Area of Torch Lake

No further action is recommended.

AOI 25 – Traprock Slag Dump

It is recommended that the MDEQ reports of improper transformer disposal be further assessed.

AOI 26 - Bootjack Stamp Sands

No further action is recommended.

AOI 14 - Gay Stamp Sands

Based on MDEQ's findings that the stamp sand deposit poses beneficial use impairments including degradation of fish and wildlife habitat, degradation of the benthos, and degradation of aesthetics, it is recommended that remedial measures to prevent the further migration of the stamp sand be considered. It is also recommended that building ruins, exposed foundation materials, debris, and the potential ACM be addressed or public access restricted.

AOI 27 - Drums on Lake Bottom

It is recommended that a thorough assessment of existing information pertaining to drum investigations, removals, and the pending MDEQ drum study be evaluated to determine if additional action is warranted.

Western Shoreline of Torch Lake – Various Areas of Concern

It is recommended that an updated Health Consultation be completed for the various areas of investigation along the western shoreline of Torch Lake.

The DHHS completed a Health Consultation for Torch Lake (March 23, 1998) that concluded that "based on the information available, none of the Torch Lake Area Brownfield properties pose an urgent public health hazard under current conditions. Several of the properties would pose public health hazards under long-term exposure from the metals in the soil, and are also under consideration for future residential development".

The DHHS recommended further evaluation of the Hubbell Slag and Quincy Smelter areas before any residential development is carried forward to determine the extent and appropriate management of the elevated lead and arsenic concentrations in the soil. In addition, the DHHS recommended that new environmental data or information concerning the future use of these properties may require future health consultations.

SECTION 5 REFERENCES

- Archimede, PhD, P.A. and Martin, G. June 2002. The Quincy Mining Company Smelting Works, 1898, Historical Land Use Survey Project.
- ATC Associates, Inc. June 2004. Asbestos Survey Report, Quincy Smelter Facility.
- Department of Natural Resources, Michigan Water Resource Commission Bureau of Water Management. February 1973. *An Evaluation of a Cupric Ammonium Carbonate Spill into Torch Lake, Houghton County, Michigan. September 29, 1972.*
- Donohue & Associates, Inc. June 1989. Final Work Plan, Torch Lake Remedial Investigation/Feasibility Study, Houghton County, Michigan. Volume 1A, Revision1.
- Flaga, C. January 1998. Michigan Department of Environmental Quality Interoffice Communication. *Reevaluation of Torch Lake Stamp Sands*.
- Franklin Township and Keweenaw National Historical Park. February 2003. Critical Safety and Preservation Needs Assessment, Quincy Mining Company Smelting Works.
- Franklin Township and Keweenaw National Historical Park. February 2003. *Stabilization Plan, Quincy Mining Company Smelting Works*.
- Geraghty & Miller, Inc. March 1992. Final Drum Removal Report. Torch Lake Drum Removal Houghton County, Michigan.
- K& J Enterprises. July 1998. Baseline Environmental Assessment Conducted Pursuant to Section 20126(1)(c) Of 1994 PA 451, Part 201 as Amended and the Rules Promulgated Pursuant Thereunder for Proposed Osceola Township Historical, Interpretive Park Site, Houghton County, Michigan.
- Keranen, A. December 1995. Site Inspection at the Julio Scrap Yard, Ripley, Michigan Notes.
- Lakeshore Estate Associates, Inc. April 1997. Baseline Environmental Assessment Conducted Pursuant to Section 20126(1)(c) Of 1994 PA 451, Part 201 as Amended and the Rules Promulgated Pursuant Thereunder for Mason, Osceola Township (M-26, Houghton County, Michigan.
- Leddy, PhD, D., et al. August 1986. Torch Lake Study. A Project Completion Report Prepared for the Michigan Department of Natural Resources.
- MACTEC Engineering and Consulting of Michigan, Inc. May 2007. *Monitoring Report, Torch Lake Superfund Site, Houghton, Michigan*.

- Meninc, Inc. March 2000. Baseline Environmental Assessment Conducted Pursuant to Section 20126(1)(c) Of 1994 PA 451, Part 201 as Amended and the Rules Promulgated Pursuant Thereunder for Former Power Station and Copper Ore Processing Facilities, Torch Lake Township, Houghton County, Michigan.
- Metcalf and Eddy. December 2004. Structural Stabilization Report for the Quincy Smelter Site, Franklin Township, Michigan.
- MDEQ (Michigan Department of Environmental Quality). January 1996. Environmental Laboratory Report. Joint AQD, ERD, and WMD Inspection on December 4, 1995 at the Julio Construction Company, Ripley, Michigan.
- MDEQ. November 2002. Environmental Laboratory Report. Traprock Slag Site Sediment Sampling Event, November 14, 2002.
- MDEQ. February 2004. Notice to Property Owners Russell Wilder and Barbara Wilder. Subject: Traprock Slag, Schoolcraft Township, Houghton County, Site 1D# 31000066.
- MDEQ. March 2004. Letter to Russell Wilder. Subject: Traprock Slag, Houghton County.
- MDEQ. August 2007. Environmental Laboratory Report. Ahmeek Regrind, Calumet Lake, and Medaguzzo Power Plant Sampling Event, August 8-10, 2007.
- MDEQ. April 2007. *Historical Photos of Ripley, Michigan Area* and three additional aerial photos. Remediation & Redevelopment Division Program Support Section Geological Services Unit.
- MDEQ. November 2002. Brownfield Redevelopment Assessment Report for Hancock/Ripley Trail Property, Hancock, Michigan. Remediation and Redevelopment Division Superfund Section.
- Padovani, S. November 2002. *Memorandum to the Region 5 United States Environmental Protection Agency*. Subject: No Action at the Coal Dock Property located at the Hubbell/Tamarack Portion of the Torch Lake Superfund Site, Houghton County, Michigan.
- Silver Shores Enterprises, Inc. May 2000. Baseline Environmental Assessment Conducted Pursuant to Section 20126(1)(c) Of 1994 PA 451, Part 201 as Amended and the Rules Promulgated Pursuant Thereunder for Hubbell (M-26), Houghton County, Michigan.
- SQS, Inc. November 2001. SQS, Inc. Proposal Number I-428. Proposal to Conduct a Phase II Environmental Site Assessment: Hancock to Ripley Railroad Right-of-Way, Houghton County, Michigan.
- MDNR (State of Michigan Department of Natural Resources). April 1988. *Laboratory Report* for 2 PCB samples taken at Julio Marine and Salvage, Ripley, Michigan.

- MDNR Environmental Response Division. April 1988. Activity Report for Mark Petrie for the dates 4/1/88-4/4/88 and 4/5/88-4/12/88, and 16 photos of Julio Marine Salvage, Ripley, Michigan.
- DHHS (U.S. Department of Health and Human Services). March 1998. *Health Consultation*. *Torch Lake. Hubbell, Houghton County, Michigan*.
- DHHS. November 2006. Health Consultation. Review of Activity-Based Sampling on the Hancock/Ripley Trail.
- Upper Peninsula Engineers and Architects. December 2004. Structural Stabilization Work for the Asbestos Abatement at the Quincy Smelter Site, Franklin Township, Michigan.
- Weston Solutions, Inc. December 2004. Quincy Smelter Asbestos Abatement Assessment, Franklin Township, Houghton County, Michigan.
- U.S. EPA. July 25, 1990. Letter from Robert J. Bowden, Chief, Emergency and Enforcement Response Branch, U.S. EPA to John L. Hesse, Principal Investigator, Michigan Department of Health. RE: Response to June 15, 1990 letter regarding the drums in Torch Lake.
- U.S. EPA. September 23, 2005. Superfund Preliminary Site Closeout Report, Final Remedial Action for Torch Lake Superfund Site, Houghton County, Michigan.

TABLES

				1		T	
			Sample Name	MGP-1	MGP-1	MGP-18	MGP-19
			Sampling Date	09/12/07	09/12/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	Laboratory	XRF	XRF
				Former Houghton	Former Houghton	Former Houghton	Former Houghton
			Sample Number/	County Gas & Coke	County Gas & Coke	County Gas & Coke	County Gas & Coke
	Part 201	Part 201	Location	Site	Site	Site	Site
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
M-4-1-							
Metals				= ~~			
Titanium			mg/kg	7,086	NT	2,110	4,424
Chromium	18	790,000	mg/kg	<lod< td=""><td>2.1 J*</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	2.1 J*	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	449	370	283	399
Iron	12,000	160,000	mg/kg	62,106	NT	31,061	46,796
Cobalt	6.8	2,600	mg/kg	804	13 J	<lod< td=""><td>481</td></lod<>	481
Nickel	20	40,000	mg/kg	<lod< td=""><td>18 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	18 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,052	1,500 J	242	2,017
Zinc	47	170,000	mg/kg	102	93	111	47
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td>14 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	14 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	22	NT	26	17
Strontium		330,000	mg/kg	88	<230	58	79
Zirconium			mg/kg	124	NT	55	68
Molybdenum		2,600	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td>2.8 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	2.8 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td>0.50</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.50	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	53	64 J	50	56
Aluminum	6,900	50,000	mg/kg	NT	2,300 J	NT	NT
Beryllium		410	mg/kg	NT	<4.5 J	NT	NT
Lithium	9.8	4,200	mg/kg	NT	4.50	NT	NT

				1		T	
			Sample Name	MGP-20	MGP-21	MGP-21	MGP-TAR
			Sampling Date	09/10/07	09/10/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	Laboratory	XRF	XRF
				Former Houghton	Former Houghton	Former Houghton	Former Houghton
			Sample Number/	County Gas & Coke	County Gas & Coke	County Gas & Coke	County Gas & Coke
	Part 201	Part 201	Location	Site	Site	Site	Site
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Matala	<u> </u>						
Metals			Д	2.000	NITE	0.117	1.00
Titanium			mg/kg	2,899	NT 25	2,117	<lod< td=""></lod<>
Chromium	18	790,000	mg/kg	<lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	35	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	378	250	325	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	25,377	NT	43,776	1,627
Cobalt	6.8	2,600	mg/kg	310	7.50	382	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	191	13	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	242	650	599	2,683
Zinc	47	170,000	mg/kg	88	100 J	125	33
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td>12</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	12	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	39	NT	33	<lod< td=""></lod<>
Strontium		330,000	mg/kg	121	<240	141	16
Zirconium			mg/kg	141	NT	95	21
Molybdenum		2,600	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td>25</td></lod<></td></lod<>	NT	<lod< td=""><td>25</td></lod<>	25
Silver	1	2,500	mg/kg	<lod< td=""><td>1.10</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	1.10	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td>0.20</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.20	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	99	61	72	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	7,600 J	NT	NT
Beryllium		410	mg/kg	NT	<4.8	NT	NT
Lithium	9.8	4,200	mg/kg	NT	6.60	NT	NT

i e	ı	T					
			Sample Name	MGP-TAR	MGP-23	MGP-24	MGP-25
			Sampling Date	09/10/07	09/10/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	Laboratory	XRF	XRF	XRF
				Former Houghton	Former Houghton	Former Houghton	Former Houghton
			Sample Number/	County Gas & Coke	County Gas & Coke	County Gas & Coke	County Gas & Coke
	Part 201	Part 201	Location	Site	Site	Site	Site
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium	1	1	ma/Ira	I NT	6,387	2,276	7,481
	10	700,000	mg/kg	-,-	,		,
Chromium	18	790,000	mg/kg	<9	<lod 704</lod 	<lod 275</lod 	<lod <lod< td=""></lod<></lod
Manganese	440	25,000	mg/kg	16			
Iron	12,000	160,000	mg/kg	NT	98,579	28,130	59,594
Cobalt	6.8	2,600	mg/kg	0.5 *	1,060	416	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	1.5 *	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	350	1,791	755	517
Zinc	47	170,000	mg/kg	7.9 J*	882	75	175
Arsenic	5.8	7.6	mg/kg	1.00	<lod< td=""><td><lod< td=""><td>38</td></lod<></td></lod<>	<lod< td=""><td>38</td></lod<>	38
Selenium	0.41	2,600	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	NT	29	45	22
Strontium		330,000	mg/kg	<230	106	100	1,682
Zirconium			mg/kg	NT	129	104	222
Molybdenum		2,600	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	0.67	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	0.030	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	4.2 *	2,037	36	298
Aluminum	6,900	50,000	mg/kg	720 J	NT	NT	NT
Beryllium		410	mg/kg	<4.5	NT	NT	NT
Lithium	9.8	4,200	mg/kg	< 0.90	NT	NT	NT

		ı		Ī	I I		T
			Sample Name	MGP-26	MGP-26	JulioScrap-3	JulioScrap-4
			Sampling Date	09/10/07	09/10/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	Laboratory	XRF	XRF	XRF
				Former Houghton	Former Houghton		
			Sample Number/	County Gas & Coke	County Gas & Coke	Julio Marine and	Julio Marine and
	Part 201	Part 201	Location	Site	Site	Salvage	Salvage
Domomoton	SDBL	RDCC	I Inita	mg/kg	mg/kg	mg/kg	mg/kg
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium			mg/kg	NT	<lod< td=""><td>8,145</td><td>4,462</td></lod<>	8,145	4,462
Chromium	18	790,000	mg/kg	59	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	930	912	317	463
Iron	12,000	160,000	mg/kg	NT	158,330	43,768	60,853
Cobalt	6.8	2,600	mg/kg	17	1,399	543	504
Nickel	20	40,000	mg/kg	45	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,100	553	692	680
Zinc	47	170,000	mg/kg	4,300 J	2,390	62	89
Arsenic	5.8	7.6	mg/kg	17	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	NT	22	31	62
Strontium		330,000	mg/kg	<280	74	164	123
Zirconium			mg/kg	NT	72	195	102
Molybdenum		2,600	mg/kg	NT	<lod< td=""><td>16</td><td><lod< td=""></lod<></td></lod<>	16	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	1.20	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	0.46	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	310	221	25	92
Aluminum	6,900	50,000	mg/kg	6,700 J	NT	NT	NT
Beryllium		410	mg/kg	<5.6	NT	NT	NT
Lithium	9.8	4,200	mg/kg	3.90	NT	NT	NT

			Sample Name	JulioScrap-5	Mickelson-6	Mickelson-6	Mickelson-7
			•	-			
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	Laboratory	XRF	XRF
	Part 201	Part 201	Sample Number/ Location	Julio Marine and Salvage	Mickelsen Property	Mickelsen Property	Mickelsen Property
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium			mg/kg	10,627	NT	33,745	<lod< td=""></lod<>
Chromium	18	790,000	mg/kg	<lod< td=""><td>980 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	980 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	983	650	670	364
Iron	12,000	160,000	mg/kg	111,398	NT	84,565	10,817
Cobalt	6.8	2,600	mg/kg	1,072	16 J	833	176
Nickel	20	40,000	mg/kg	<lod< td=""><td>180 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	180 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,161	490 J	79	491
Zinc	47	170,000	mg/kg	80	43	47	94
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td>14 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	14 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	31	NT	29	17
Strontium		330,000	mg/kg	100	<200	169	91
Zirconium			mg/kg	137	NT	131	64
Molybdenum		2,600	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td>16</td></lod<></td></lod<>	NT	<lod< td=""><td>16</td></lod<>	16
Silver	1	2,500	mg/kg	<lod< td=""><td>0.51 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.51 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td>0.015</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.015	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	54	25 J	<lod< td=""><td>35</td></lod<>	35
Aluminum	6,900	50,000	mg/kg	NT	7,800 J	NT	NT
Beryllium		410	mg/kg	NT	0.73 J *	NT	NT
Lithium	9.8	4,200	mg/kg	NT	4.00	NT	NT

			Sample Name	JulioCon-13	HookingsP 20	JulioSalvage-15	JulioSalvage-16
			-		HockingsB-20		
			Sampling Date	09/12/07	09/07/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF
	Part 201	Part 201	Sample Number/ Location	Julio Contracting	Hockings Property	Julio Property	Julio Property
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium			mg/kg	8,714	19,192	8,386	14,545
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	408	495	802	1,323
Iron	12,000	160,000	mg/kg	30,655	98,119	59,616	104,577
Cobalt	6.8	2,600	mg/kg	301	<lod< td=""><td>546</td><td>999</td></lod<>	546	999
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	570	1,409	1,653	2,020
Zinc	47	170,000	mg/kg	34	59	72	84
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	17	41	18	21
Strontium		330,000	mg/kg	75	94	96	509
Zirconium			mg/kg	82	250	101	131
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td>226</td><td><lod< td=""><td>102</td></lod<></td></lod<>	226	<lod< td=""><td>102</td></lod<>	102
Cadmium	1.2	550	mg/kg	<lod< td=""><td>131</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	131	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	20	17	<lod< td=""><td>41</td></lod<>	41
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT

			Sample Name	H&Ymarina-17	H&Ymarina-18	H&Ymarina-19	H&Ymarina-19
			•				
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	Laboratory	XRF
	Part 201	Part 201	Sample Number/ Location	H&Y Marina	H&Y Marina	H&Y Marina	H&Y Marina
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium			mg/kg	17,859	26,959	NT	<lod< td=""></lod<>
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td>460 J</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>460 J</td><td><lod< td=""></lod<></td></lod<>	460 J	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	1,576	1,698	5,500	12,993
Iron	12,000	160,000	mg/kg	109,446	118,890	NT	1,106,298
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td>1,033</td><td>37 J</td><td><lod< td=""></lod<></td></lod<>	1,033	37 J	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td>250 J</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>250 J</td><td><lod< td=""></lod<></td></lod<>	250 J	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	2,002	956	470 J	241
Zinc	47	170,000	mg/kg	99	89	83	<lod< td=""></lod<>
Arsenic	5.8	7.6	mg/kg	21	<lod< td=""><td>30 J</td><td><lod< td=""></lod<></td></lod<>	30 J	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Rubidium			mg/kg	55	15	NT	49
Strontium		330,000	mg/kg	296	100	<170	<lod< td=""></lod<>
Zirconium			mg/kg	164	176	NT	26
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td>34</td></lod<></td></lod<>	<lod< td=""><td>NT</td><td>34</td></lod<>	NT	34
Silver	1	2,500	mg/kg	86	<lod< td=""><td>0.38 J</td><td><lod< td=""></lod<></td></lod<>	0.38 J	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td>0.0099 *</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.0099 *</td><td><lod< td=""></lod<></td></lod<>	0.0099 *	<lod< td=""></lod<>
Lead	21	400	mg/kg	27	<lod< td=""><td>440 J</td><td>340</td></lod<>	440 J	340
Aluminum	6,900	50,000	mg/kg	NT	NT	1,800 J	NT
Beryllium		410	mg/kg	NT	NT	<3.4 J	NT
Lithium	9.8	4,200	mg/kg	NT	NT	0.74	NT

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

J - Data qualified as estimated based on data validation

LOD - Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg – Milligrams per kilogram. Laboratory results are on a dry weight basis.

MGP - Manufactured Gas Plant

NT - Not Tested

Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

XRF - X-Ray Fluorescence

- "--" Not listed in MDEQ Part 201 Tables
- * Analyte detected below quantitation limits
- <- Less than

Table 2 - PCB Sampling Results Torch Lake Area Assessment September 6 - September 12, 2007

			Sample Name	MGl	PB-1	MGP-	-TAR	MGP -	XRF21	MGP -	XRF26	Michels	son B-6
			Sampling Date	09/1	1/07	09/1	0/07	09/1	0/07	09/1	0/07	09/1	2/07
			Sample Matrix	Soil		Ta	ar	So	oil	Soil		Sc	oil
	Regulatory Criteria		Sample Location	AO	I 15	AO	I 15	AO:	I 15	AO:	I 15	AO	I 15
Parameter	Part 201 SDBL	Part 201 RDCC	Units	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
PCBs													
Aroclor 1016	NA	NA	μg/Kg-dry	ND _J	79	ND	330	ND _J	80	ND _J	97	ND _J	42
Aroclor 1221	NA	NA	μg/Kg-dry	ND	79	ND	330	ND _J	80	ND	97	ND	42
Aroclor 1232	NA	NA	μg/Kg-dry	ND	79	ND	330	ND _J	80	ND	97	ND	42
Aroclor 1242	NA	NA	μg/Kg-dry	ND	79	ND	330	ND _J	80	ND	97	ND	42
Aroclor 1248	NA	NA	μg/Kg-dry	ND	79	ND	330	ND _J	80	ND	97	ND	42
Aroclor 1254	NA	NA	μg/Kg-dry	ND	79	ND	330	ND _J	80	ND	97	ND	42
Aroclor 1260	NA	NA	μg/Kg-dry	ND	79	ND	330	ND _J	80	ND	97	ND	42
Aroclor 1262	NA	NA	μg/Kg-dry	ND	79	ND	330	ND _J	80	ND	97	ND	42
Total PCBs	NA	4,000	μg/Kg-dry	ND	79	ND	330	ND _J	80	ND	97	ND	42

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

AOI -Area of Investigation

_J - Data qualified as estimated based on data validation.

NA - Not available

ND - Not detected above laboratory reporting limit

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - Polychlorinated Biphenyl

RL = laboratory reporting limit

μg/kg-dry - micrograms per kilogram dry weight

* - analyte detected below laboratory quantitation limit

Table 2 - PCB Sampling Results Torch Lake Area Assessment September 6 - September 12, 2007

			Sample Name	H&Y Ma	rina B-19	Mason	XRF 6	Mason 2	XRF 10	MS S	51-12	MS S	1-13	TM	S1-2
			Sampling Date	09/1	2/07	09/0	6/07	09/0	6/07	09/1	2/07	09/1	2/07	09/1	2/07
			Sample Matrix	Sc	oil	So	oil	So	oil	Soil		il So		Sc	oil
	Regulator	y Criteria	Sample Location	AO	I 15	AO	I 10	AO	I 10	AO	I 10	AO	10	AO	I 10
Parameter	Part 201 SDBL	Part 201 RDCC	Units	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
PCBs	SDBL	RDCC	Omes	Result	TCL	resurt	KE	Result	KE	Result	RE	Result	KE	Result	KE
Aroclor 1016	NA	NA	μg/Kg-dry	ND	36	ND _J	39	ND _J	35	ND _J	42	ND _J	37	ND _J	35
Aroclor 1221	NA	NA	μg/Kg-dry	ND	36	ND	39	ND	35	ND	42	ND	37	ND	35
Aroclor 1232	NA	NA	μg/Kg-dry	ND	36	ND	39	ND	35	ND	42	ND	37	ND	35
Aroclor 1242	NA	NA	μg/Kg-dry	ND	36	ND	39	ND	35	ND	42	ND	37	ND	35
Aroclor 1248	NA	NA	μg/Kg-dry	ND	36	ND	39	ND	35	ND	42	ND	37	ND	35
Aroclor 1254	NA	NA	μg/Kg-dry	ND	36	ND	39	ND	35	ND	42	ND	37	ND	35
Aroclor 1260	NA	NA	μg/Kg-dry	ND	36	ND	39	ND	35	ND	42	ND	37	ND	35
Aroclor 1262	NA	NA	μg/Kg-dry	11 *	36	ND	39	ND	35	ND	42	ND	37	ND	35
Total PCBs	NA	4,000	μg/Kg-dry	11 *	36	ND	39	ND	35	ND	42	ND	37	ND	35

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

AOI -Area of Investigation

_J - Data qualified as estimated based on data validation.

NA - Not available

ND - Not detected above laboratory reporting limit

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - Polychlorinated Biphenyl

RL = laboratory reporting limit

 $\mu g/kg\text{-dry}$ - micrograms per kilogram dry weight

^{* -} analyte detected below laboratory quantitation limit

Table 2 - PCB Sampling Results Torch Lake Area Assessment September 6 - September 12, 2007

			Sample Name	TM	S1-5	TM	S2-2	Hub S	51-12	Mineral	XRF 6	Mineral	XRF 11
			Sampling Date	09/1	2/07	09/1	2/07	09/1	2/07	09/0	7/07	09/0	7/07
			Sample Matrix	Soil		Sc	oil	Sc	oil	Soil		Soil	
	Regulatory Criteria		Sample Location	AO	I 10	AO	I 10	AO]	[19	AO	I 22	AO	I 22
	Part 201												
Parameter	SDBL	RDCC	Units	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
PCBs													
Aroclor 1016	NA	NA	μg/Kg-dry	ND _J	37	ND _J	38	ND _J	35	ND _J	70	ND _J	68
Aroclor 1221	NA	NA	μg/Kg-dry	ND	37	ND	38	ND	35	ND	70	ND	68
Aroclor 1232	NA	NA	μg/Kg-dry	ND	37	ND	38	ND	35	ND	70	ND	68
Aroclor 1242	NA	NA	μg/Kg-dry	ND	37	ND	38	ND	35	ND	70	ND	68
Aroclor 1248	NA	NA	μg/Kg-dry	ND	37	ND	38	ND	35	ND	70	ND	68
Aroclor 1254	NA	NA	μg/Kg-dry	ND	37	ND	38	ND	35	ND	70	ND	68
Aroclor 1260	NA	NA	μg/Kg-dry	ND	37	ND	38	ND	35	ND	70	ND	68
Aroclor 1262	NA	NA	μg/Kg-dry	ND	37	ND	38	ND	35	ND	70	24 *	68
Total PCBs	NA	4,000	μg/Kg-dry	ND	37	ND	38	ND	35	ND	70	24 *	68

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

AOI -Area of Investigation

_J - Data qualified as estimated based on data validation.

NA - Not available

ND - Not detected above laboratory reporting limit

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - Polychlorinated Biphenyl

RL = laboratory reporting limit

 $\mu g/kg\text{-}dry$ - micrograms per kilogram dry weight

^{* -} analyte detected below laboratory quantitation limit

Table 2 - PCB Sampling Results Torch Lake Area Assessment September 6 - September 12, 2007

			Sample Name	Calumet	XRF 16	Lake Line	den S2 - 8	Trapro	ck B-8	Traprod	ck B-12	Bootjac	k B-17
			Sampling Date	09/0	7/07	09/1	2/07	09/1	1/07	09/1	1/07	09/1	1/07
			Sample Matrix	Sc	oil	Sc	oil	Soil		So	oil	So	oil
	Regulator	y Criteria	Sample Location	AO	I 12	AO	I 24	AO	I 25	AO	I 25	AO	I 26
	Part 201	Part 201											
Parameter	SDBL	RDCC	Units	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
PCBs													
Aroclor 1016	NA	NA	μg/Kg-dry	ND _J	57	ND _J	43	ND _J	37	ND _J	35	ND _J	87
Aroclor 1221	NA	NA	μg/Kg-dry	ND _J	57	ND	43	ND	37	ND	35	ND	87
Aroclor 1232	NA	NA	μg/Kg-dry	ND _J	57	ND	43	ND	37	ND	35	ND	87
Aroclor 1242	NA	NA	μg/Kg-dry	ND _J	57	ND	43	ND	37	ND	35	ND	87
Aroclor 1248	NA	NA	μg/Kg-dry	ND _J	57	ND	43	ND	37	ND	35	ND	87
Aroclor 1254	NA	NA	μg/Kg-dry	ND _J	57	ND	43	ND	37	ND	35	ND	87
Aroclor 1260	NA	NA	μg/Kg-dry	ND _J	57	ND	43	ND	37	ND	35	ND	87
Aroclor 1262	NA	NA	μg/Kg-dry	ND _J	57	ND	43	ND	37	ND	35	ND	87
Total PCBs	NA	4,000	μg/Kg-dry	ND _J	57	ND	43	ND	37	ND	35	ND	87

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

AOI -Area of Investigation

_J - Data qualified as estimated based on data validation.

NA - Not available

ND - Not detected above laboratory reporting limit

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - Polychlorinated Biphenyl

RL = laboratory reporting limit

μg/kg-dry - micrograms per kilogram dry weight

^{* -} analyte detected below laboratory quantitation limit

Table 2 - PCB Sampling Results Torch Lake Area Assessment September 6 - September 12, 2007

			Sample Name	Gay B	- XRF6	Gay B -	XRF11	Gay B -	XRF14	Gay S	51-21
			Sampling Date	09/1	0/07	09/1	0/07	09/1	0/07	09/1	0/07
			Sample Matrix	Sc	oil	So	oil	So	oil	Sc	oil
	Regulatory Criteria		Sample Location	AO	I 14	AO	I 14	AO	I 14	AO:	I 14
	Part 201	Part 201									1
Parameter	SDBL	RDCC	Units	Result	RL	Result	RL	Result	RL	Result	RL
PCBs											
Aroclor 1016	NA	NA	μg/Kg-dry	ND _J	74	ND _J	76	ND _J	75	ND _J	34
Aroclor 1221	NA	NA	μg/Kg-dry	ND	74	ND	76	ND	75	ND	34
Aroclor 1232	NA	NA	μg/Kg-dry	ND	74	ND	76	ND	75	ND	34
Aroclor 1242	NA	NA	μg/Kg-dry	ND	74	ND	76	ND	75	ND	34
Aroclor 1248	NA	NA	μg/Kg-dry	ND	74	ND	76	ND	75	ND	34
Aroclor 1254	NA	NA	μg/Kg-dry	ND	74	ND	76	ND	75	ND	34
Aroclor 1260	NA	NA	μg/Kg-dry	ND	74	ND	76	ND	75	ND	34
Aroclor 1262	NA	NA	μg/Kg-dry	ND	74	ND	76	ND	75	ND	34
Total PCBs	NA	4,000	μg/Kg-dry	ND	74	ND	76	ND	75	ND	34

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

AOI -Area of Investigation

_J - Data qualified as estimated based on data validation.

NA - Not available

ND - Not detected above laboratory reporting limit

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - Polychlorinated Biphenyl

RL = laboratory reporting limit

μg/kg-dry - micrograms per kilogram dry weight

* - analyte detected below laboratory quantitation limit

Table 3 - Summary of Select Analytical Results for MGP-Tar Sample Torch Lake Area Assessment September 10, 2007

			Sample Name	MGP	- TAR
			Sample Name Sampling Date	09/1	
			Sampling Date Sample Matrix		ar
			Sample Matrix	1.	ai
	Regulato	ry Criteria	Sample Location	AOI N	Jo. 15
	Ţ		Sample Location	AOIT	10. 13
Parameter	Part 201 SDBL	Part 201 RDCC	Units	Result	RL
SVOCs (Method SW8270C)	SDDL	RDCC	Cints	Result	KL
2-Methylnaphthalene	NA	8,100,000	μg/Kg	3,600,000	960,000
Acenaphthene	NA	41,000,000	μg/Kg	400,000 *	960,000
Acenaphthylene	NA	1,600,000	μg/Kg	4,900,000	960,000
Anthracene	NA	230,000,000	μg/Kg	3,200,000	960,000
Benzo(a)anthracene	NA	20,000	μg/Kg	2,500,000	960,000
Benzo(a)pyrene	NA	2,000	μg/Kg	2,400,000	960,000
Benzo(b)fluoranthene	NA	20,000	μg/Kg	2,400,000	960,000
Benzo(g,h,i)perylene	NA	2,500,000	μg/Kg	1,400,000	960,000
Benzo(k)fluoranthene	NA	200,000	μg/Kg	1,100,000	960,000
Chrysene	NA	2,000,000	μg/Kg	1,800,000	960,000
Dibenz(a,h)anthracene	NA	2,000	μg/Kg	270,000 *	960,000
Fluoranthene	NA	46,000,000	μg/Kg	7,400,000	960,000
Fluorene	NA	27,000,000	μg/Kg	3,000,000	960,000
Indeno(1,2,3-cd)pyrene	NA	20,000	μg/Kg	1,200,000	960,000
Naphthalene	NA	16,000,000	μg/Kg	21,000,000	960,000
Phenanthrene	NA	1,600,000	μg/Kg	11,000,000	960,000
Pyrene	NA	29,000,000	μg/Kg	7,900,000	960,000
VOCs (Method SW8260B)	<u>. </u>	, ,	100	, ,	,
1,2,3-Trimethylbenzene	NA	NA	μg/Kg	92,000 * J	200,000
1,2,4-Trimethylbenzene	NA	110,000	μg/Kg	260,000 J	200,000
1,3,5-Trimethylbenzene	NA	94,000	μg/Kg	100,000 * J	200,000
2-Methylnaphthalene	NA	8,100,000	μg/Kg	3,200,000 J	1,000,000
Acetone	NA	23,000,000	μg/Kg	630,000 * J	10,000,000
Benzene	NA	180,000	μg/Kg	1,200,000 J	120,000
Ethylbenzene	NA	140,000	μg/Kg	80,000 * J	200,000
m,p-Xylene	NA	NA	μg/Kg	520,000 J	400,000
Naphthalene	NA	16,000,000	μg/Kg	29,000,000 J	1,000,000
o-Xylene	NA	NA	μg/Kg	210,000 J	200,000
Styrene	NA	400,000	μg/Kg	210,000 J	200,000
Toluene	NA	250,000	μg/Kg	640,000 J	200,000
Xylenes, Total	NA	150,000	μg/Kg	730,000 J	600,000
Cyanide (Method SW9012A)					
Cyanide, Total	390	12	mg/kg	3.5	0.12

Table 3 - Summary of Select Analytical Results for MGP-Tar Sample Torch Lake Area Assessment September 10, 2007

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

Only VOCs detected are listed in table.

J - qualified as estimated due to surrogate spike recovery outside of the laboratory generated quality control limits.

MDEQ - Michigan Department of Environmental Quality

mg/kg - milligrams per kilogram

NA - Not available or not applicable

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

RL - laboratory reporting limit

SVOCs - semi-volatile organic compounds

VOCs - volatile organic compounds

μg/kg - micrograms per kilogram

* - analyte detected below quantitation limits

Table 4 - AOI 17 XRF Screening Results Torch Lake Area Assessment September 7 - September 12, 2007

			Sample Name	DollarB-18	DollarB-19	DollarBay-11	DollarBay-12
			Sampling Date	09/07/07	09/07/07	09/12/07	09/12/07
			Sample Type	XRF	XRF	XRF	XRF
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Number/				
	Part 201	Part 201	Location	Dollar Bay Area	Dollar Bay Area	Dollar Bay Area	Dollar Bay Area
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium			mg/kg	8,754	27,668	2,289	4,978
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	1,111	268,568	5,386	69,559
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>956</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>956</td></lod<></td></lod<>	<lod< td=""><td>956</td></lod<>	956
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>159</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>159</td></lod<></td></lod<>	<lod< td=""><td>159</td></lod<>	159
Copper	32	20,000	mg/kg	31	14,327	1,249	53,702
Zinc	47	170,000	mg/kg	<lod< td=""><td><lod< td=""><td>24</td><td>1,251</td></lod<></td></lod<>	<lod< td=""><td>24</td><td>1,251</td></lod<>	24	1,251
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td>33</td><td>166</td></lod<></td></lod<>	<lod< td=""><td>33</td><td>166</td></lod<>	33	166
Selenium	0.41	2,600	mg/kg	7	<lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<>	<lod< td=""><td>10</td></lod<>	10
Rubidium			mg/kg	11	26	7	<lod< td=""></lod<>
Strontium		330,000	mg/kg	53	359	106	163
Zirconium			mg/kg	242	565	69	54
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td>25</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>25</td><td><lod< td=""></lod<></td></lod<>	25	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td>275</td><td><lod< td=""><td>233</td></lod<></td></lod<>	275	<lod< td=""><td>233</td></lod<>	233
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	60	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td>73</td><td>51</td><td><lod< td=""></lod<></td></lod<>	73	51	<lod< td=""></lod<>

Table 4 - AOI 17 XRF Screening Results Torch Lake Area Assessment September 7 - September 12, 2007

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

LOD – Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg – Milligrams per kilogram

Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

XRF – X-Ray Fluorescence

"--" – Not listed in MDEQ Part 201 Tables

< - Less than

Table 5 - AOI 10 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 6, 2007

	Ī	l I			l	l	I
			Sample Name	MasonB-2	MasonB-3	MasonB-4	MasonB-5
			Sampling Date	09/06/07	09/06/07	09/06/07	09/06/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF
			Sample Number/	Mason Area	Mason Area	Mason Area	Mason Area
	Part 201	Part 201	Location	Ruins	Ruins	Ruins	Ruins
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium			mg/kg	4,079	4,987	4,800	12,135
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>298</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>298</td></lod<></td></lod<>	<lod< td=""><td>298</td></lod<>	298
Iron	12,000	160,000	mg/kg	46,859	49,950	23,910	77,839
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	125	312	<lod< td=""><td>2,548</td></lod<>	2,548
Zinc	47	170,000	mg/kg	99	63	38	39
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	23	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	45	37	95	31
Strontium		330,000	mg/kg	352	218	45	100
Zirconium			mg/kg	113	114	210	91
Molybdenum		2,600	mg/kg	10	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	35	48	13	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT

Table 5 - AOI 10 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 6, 2007

i 	Ī	I			T T		T T	
			Sample Name	MasonB-6	MasonB-6	MasonB-7	MasonB-8	MasonB-9
			Sampling Date	09/06/07	09/06/07	09/06/07	09/06/07	09/06/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	Laboratory	XRF	XRF	XRF	XRF
			Sample Number/	Mason Area	Mason Area	Mason Area	Mason Area	Mason Area
	Part 201	Part 201	Location	Ruins	Ruins	Ruins	Ruins	Ruins
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals	<u>'</u>							
Titanium			mg/kg	NT	3,184	<lod< td=""><td>1,076</td><td>18,070</td></lod<>	1,076	18,070
Chromium	18	790,000	mg/kg	8.2 *	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	790	242	<lod< td=""><td>171</td><td>329</td></lod<>	171	329
Iron	12,000	160,000	mg/kg	NT	29,414	3,713	5,935	83,544
Cobalt	6.8	2,600	mg/kg	17	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	31	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,900	870	<lod< td=""><td>274</td><td>1,613</td></lod<>	274	1,613
Zinc	47	170,000	mg/kg	110 J	69	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Arsenic	5.8	7.6	mg/kg	6.70	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	NT	16	8	47	19
Strontium		330,000	mg/kg	<240	124	116	19	126
Zirconium			mg/kg	NT	62	17	62	120
Molybdenum		2,600	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	5.30	<lod< td=""><td><lod< td=""><td><lod< td=""><td>118</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>118</td></lod<></td></lod<>	<lod< td=""><td>118</td></lod<>	118
Cadmium	1.2	550	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	0.51	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	1,100	553	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	16,000 J	NT	NT	NT	NT
Beryllium		410	mg/kg	0.75 *	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	7.10	NT	NT	NT	NT

Table 5 - AOI 10 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 6, 2007

i 	ı							
			Sample Name	MasonB-10	MasonB-10	MasonB-11	MasonB-12	MasonB-13
			Sampling Date	09/06/07	09/06/07	09/06/07	09/06/07	09/06/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	Laboratory	XRF	XRF	XRF	XRF
			Sample Number/		Mason Area	Mason Area	Mason Area	Mason Area
	Part 201	Part 201	Location	Mason Area Ruins	Ruins	Ruins	Ruins	Ruins
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals				<u> </u>				
Titanium			mg/kg	NT	9,762	16,491	13,242	3,289
Chromium	18	790,000	mg/kg	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	520	349	349	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	NT	78,750	79,205	158,600	48,334
Cobalt	6.8	2,600	mg/kg	17	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	32	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	19,000	12,703	3,216	275,954	4,559
Zinc	47	170,000	mg/kg	110 J	<lod< td=""><td>103</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	103	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Arsenic	5.8	7.6	mg/kg	1.70	74	<lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<>	<lod< td=""><td>18</td></lod<>	18
Selenium	0.41	2,600	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	NT	20	21	<lod< td=""><td>6</td></lod<>	6
Strontium		330,000	mg/kg	<180	117	111	215	32
Zirconium			mg/kg	NT	79	119	71	25
Molybdenum		2,600	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td>9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>9</td></lod<></td></lod<>	<lod< td=""><td>9</td></lod<>	9
Silver	1	2,500	mg/kg	5.40	<lod< td=""><td>96</td><td>145</td><td><lod< td=""></lod<></td></lod<>	96	145	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	0.12	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	200	477	206	78	108
Aluminum	6,900	50,000	mg/kg	21,000 J	NT	NT	NT	NT
Beryllium		410	mg/kg	<3.6	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	3.40	NT	NT	NT	NT

Table 5 - AOI 10 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 6, 2007

			Sample Name	MS-S1-01	MS-S1-02i	MS-S1-03	MS-S1-04	MS-S1-05	MS-S1-06
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF	XRF
			Sample Number/						
	Part 201	Part 201	Location	Mason Sands	Mason Sands	Mason Sands	Mason Sands	Mason Sands	Mason Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals				2 2	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Titanium			mg/kg	9,020	2,748	4,244	5,253	8,832	7,753
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	673	<lod< td=""><td>390</td><td>405</td><td>620</td><td>562</td></lod<>	390	405	620	562
Iron	12,000	160,000	mg/kg	65,574	124,634	28,043	38,834	60,693	54,495
Cobalt	6.8	2,600	mg/kg	807	902	414	499	527	528
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	3,022	155	959	950	1,394	401
Zinc	47	170,000	mg/kg	89	26	37	51	74	56
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	23	13	39	25	20	19
Strontium		330,000	mg/kg	117	569	64	69	119	95
Zirconium	1		mg/kg	114	77	87	91	98	112
Molybdenum	-	2,600	mg/kg	<lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	11	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td>81</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>81</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	81	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>552</td><td><lod< td=""><td>636</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>552</td><td><lod< td=""><td>636</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>552</td><td><lod< td=""><td>636</td></lod<></td></lod<>	552	<lod< td=""><td>636</td></lod<>	636
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td>39</td><td>12 NE</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	39	12 NE	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	NT	NT
Beryllium Lithium	9.8	410 4,200	mg/kg	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Liuilulli	9.8	4,200	mg/kg	INI	IN I	IN I	IN I	IN I	IN I

Table 5 - AOI 10 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 6, 2007

			CI- N	MC C1 07	MC C1 00	MC C1 10	MC C1 11	MC C1 10	MC C1 10
			Sample Name	MS-S1-07	MS-S1-08	MS-S1-10	MS-S1-11	MS-S1-12	MS-S1-12
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	Laboratory	XRF
			Sample Number/						
	Part 201	Part 201	Location	Mason Sands	Mason Sands	Mason Sands	Mason Sands	Mason Sands	Mason Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals			<u> </u>	8 8	<u> </u>	<u> </u>	2 2		8 8
Titanium		I	mg/kg	8,075	7,600	1,815	6,873	NT	3,420
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>7.1 *</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>7.1 *</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>7.1 *</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>7.1 *</td><td><lod< td=""></lod<></td></lod<>	7.1 *	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	537	650	88	490	240	231
Iron	12,000	160,000	mg/kg	60,173	53,806	8,961	68,885	NT	21,704
Cobalt	6.8	2,600	mg/kg	627	430	<lod< td=""><td>818</td><td>7.70</td><td>249</td></lod<>	818	7.70	249
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>14</td><td><lod< td=""></lod<></td></lod<>	14	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	684	825	<lod< td=""><td>2,544</td><td>230</td><td>190</td></lod<>	2,544	230	190
Zinc	47	170,000	mg/kg	55	65	17	92	60	39
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.98</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< 0.98</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< 0.98</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>< 0.98</td><td><lod< td=""></lod<></td></lod<>	< 0.98	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Rubidium			mg/kg	22	19	62	24	NT	35
Strontium		330,000	mg/kg	110	131	60	115	<250	63
Zirconium			mg/kg	93	100	158	98	NT	95
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td>8</td><td>14</td><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>8</td><td>14</td><td>NT</td><td><lod< td=""></lod<></td></lod<>	8	14	NT	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.37</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.37</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.37</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.37</td><td><lod< td=""></lod<></td></lod<>	0.37	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>77</td><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>77</td><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>77</td><td>NT</td><td><lod< td=""></lod<></td></lod<>	77	NT	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	834	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.022</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.022</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.022</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.022</td><td><lod< td=""></lod<></td></lod<>	0.022	<lod< td=""></lod<>
Lead	21	400 50,000	mg/kg	<lod NT</lod 	<lod NT</lod 	9 NT	12 NT	6.7 * 9,700	10 NT
Aluminum	6,900	410	mg/kg	NT NT	NT NT	NT NT	NT NT	9,700 <4.9	NT NT
Beryllium Lithium	9.8	4,200	mg/kg mg/kg	NT NT	NT NT	NT NT	NT NT	<4.9 3.10	NT NT
Liuiluili	7.0	4,200	mg/kg	11/1	111	1 1 1	1 1 1	3.10	11/1

Table 5 - AOI 10 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 6, 2007

			Sample Name	MS-S1-13	MS-S1-13	MS-S1-14	MS-S1-15	MS-S1-16	MS-S1-17
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	Laboratory	XRF	XRF	XRF	XRF	XRF
			Sample Number/						
	Part 201	Part 201	Location	Mason Sands	Mason Sands	Mason Sands	Mason Sands	Mason Sands	Mason Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Titanium			mg/kg	NT	9,907	9,489	5,359	10,639	8,516
Chromium	18	790.000	mg/kg	18	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Manganese	440	25,000	mg/kg	550	945	687	568	719	530
Iron	12,000	160,000	mg/kg	NT	72,837	58,136	43,971	55,191	51,550
Cobalt	6.8	2,600	mg/kg	18	838	532	<lod< th=""><th>641</th><th>591</th></lod<>	641	591
Nickel	20	40,000	mg/kg	31	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Copper	32	20,000	mg/kg	2,500	2,044	622	379	343	294
Zinc	47	170,000	mg/kg	170	132	77	44	58	58
Arsenic	5.8	7.6	mg/kg	8.60	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Selenium	0.41	2,600	mg/kg	NT	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Rubidium			mg/kg	NT	25	18	16	22	23
Strontium		330,000	mg/kg	<210	100	105	90	109	101
Zirconium			mg/kg	NT	111	95	83	126	95
Molybdenum		2,600	mg/kg	NT	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Silver	1	2,500	mg/kg	3.10	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Cadmium	1.2	550	mg/kg	NT	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Tin			mg/kg	NT	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Antimony		180	mg/kg	NT	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Barium	75	37,000	mg/kg	NT	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Mecury	0.13	160	mg/kg	0.28	<lod< th=""><th><lod< th=""><th><lod< th=""><th>16</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>16</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>16</th><th><lod< th=""></lod<></th></lod<>	16	<lod< th=""></lod<>
Lead	21	400	mg/kg	200	140	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Aluminum	6,900	50,000	mg/kg	23,000	NT	NT	NT	NT	NT
Beryllium Lithium	9.8	410 4,200	mg/kg	<4.2 7.60	NT NT	NT NT	NT NT	NT NT	NT NT
Liunum	9.0	4,200	mg/kg	7.00	11/1	11/1	1 11	1 1 1	IN I

Table 5 - AOI 10 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 6, 2007

			Sample Name	MS-S1-18	MS-S1-19	TM-S2-01	TM-S1-01	TM-S1-02	TM-S1-02
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	Laboratory	XRF
			Sample Number/				Tamarack	Tamarack	Tamarack
	Part 201	Part 201	Location	Mason Sands	Mason Sands	Mason Sands	Sands	Sands	Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals									
Titanium			mg/kg	5,198	7,794	8,849	1,453	NT	7,837
Chromium	18	790,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>14 J</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>14 J</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>14 J</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>14 J</th><th><lod< th=""></lod<></th></lod<>	14 J	<lod< th=""></lod<>
Manganese	440	25,000	mg/kg	368	615	768	<lod< th=""><th>430</th><th>762</th></lod<>	430	762
Iron	12,000	160,000	mg/kg	36,248	53,693	65,748	15,030	NT	59,685
Cobalt	6.8	2,600	mg/kg	<lod< th=""><th>503</th><th>629</th><th>178</th><th>15 J</th><th>725</th></lod<>	503	629	178	15 J	725
Nickel	20	40,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>24 J</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>24 J</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>24 J</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>24 J</th><th><lod< th=""></lod<></th></lod<>	24 J	<lod< th=""></lod<>
Copper	32	20,000	mg/kg	153	191	2,373	107	2,700 J	2,334
Zinc	47	170,000	mg/kg	37	76	62	12	59	76
Arsenic	5.8	7.6	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.35 J *</th><th>8</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0.35 J *</th><th>8</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0.35 J *</th><th>8</th></lod<></th></lod<>	<lod< th=""><th>0.35 J *</th><th>8</th></lod<>	0.35 J *	8
Selenium	0.41	2,600	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<>	NT	<lod< th=""></lod<>
Rubidium			mg/kg	50	25	25	36	NT	41
Strontium		330,000	mg/kg	109	103	115	66	<170	135
Zirconium			mg/kg	123	91	109	64	NT	116
Molybdenum		2,600	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>9</th><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>9</th><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>9</th><th>NT</th><th><lod< th=""></lod<></th></lod<>	9	NT	<lod< th=""></lod<>
Silver	1	2,500	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>1.2 J</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>1.2 J</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>1.2 J</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>1.2 J</th><th><lod< th=""></lod<></th></lod<>	1.2 J	<lod< th=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<>	NT	<lod< th=""></lod<>
Tin			mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<>	NT	<lod< th=""></lod<>
Antimony		180	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<>	NT	<lod< th=""></lod<>
Barium	75	37,000	mg/kg	<lod< th=""><th>584</th><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	584	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""></lod<></th></lod<>	NT	<lod< th=""></lod<>
Mecury	0.13	160	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.038</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0.038</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0.038</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.038</th><th><lod< th=""></lod<></th></lod<>	0.038	<lod< th=""></lod<>
Lead	21	400	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>11</th><th>8 J</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>11</th><th>8 J</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>11</th><th>8 J</th><th><lod< th=""></lod<></th></lod<>	11	8 J	<lod< th=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	19,000 J	NT
Beryllium	 0 0	410	mg/kg	NT	NT	NT	NT	<3.3 J	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT	7.10	NT

Table 5 - AOI 10 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 6, 2007

		ı			I		
			Sample Name	TM-S1-03	TM-S1-04	TM-S1-05	TM-S1-05
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	Laboratory	XRF
			Sample Number/	Tamarack	Tamarack	Tamarack	Tamarack
	Part 201	Part 201	Location	Sands	Sands	Sands	Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium			mg/kg	9,285	2,597	NT	4,493
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>20</td><td><lod< td=""></lod<></td></lod<>	20	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	881	265	530	475
Iron	12,000	160,000	mg/kg	69,920	27,233	NT	62,659
Cobalt	6.8	2,600	mg/kg	752	410	21	677
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td>30</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>30</td><td><lod< td=""></lod<></td></lod<>	30	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	2,560	158	9,100	1,513
Zinc	47	170,000	mg/kg	92	76	100	107
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td>9.80</td><td>72</td></lod<></td></lod<>	<lod< td=""><td>9.80</td><td>72</td></lod<>	9.80	72
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Rubidium			mg/kg	19	62	NT	24
Strontium		330,000	mg/kg	84	98	<270	107
Zirconium			mg/kg	104	189	NT	89
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td>2.40</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.40</td><td><lod< td=""></lod<></td></lod<>	2.40	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td>428</td></lod<></td></lod<>	<lod< td=""><td>NT</td><td>428</td></lod<>	NT	428
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td>0.22</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.22</td><td><lod< td=""></lod<></td></lod<>	0.22	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td>42</td><td>530</td><td>631</td></lod<>	42	530	631
Aluminum	6,900	50,000	mg/kg	NT	NT	20,000	NT
Beryllium		410	mg/kg	NT	NT	0.58 *	NT
Lithium	9.8	4,200	mg/kg	NT	NT	5.00	NT

Table 5 - AOI 10 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 6, 2007

	T	1		T T	
			Sample Name	TM-S2-02	TAM-2-2
			Sampling Date	09/12/07	09/12/07
			Sample Matrix	Soil	Soil
			Sample Type	Laboratory	XRF
			Sample Number/	·	Tamarack
	Part 201	Part 201	Location	Tamarack Sands	Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg
Metals				<u> </u>	<u> </u>
Titanium			mg/kg	NT	6,088
Chromium	18	790,000	mg/kg	19	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	670	187
Iron	12,000	160,000	mg/kg	NT	45,530
Cobalt	6.8	2,600	mg/kg	25	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	34	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	2,000	1,602
Zinc	47	170,000	mg/kg	87	47
Arsenic	5.8	7.6	mg/kg	1.20	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	NT	<lod< td=""></lod<>
Rubidium			mg/kg	NT	15
Strontium		330,000	mg/kg	<210	78
Zirconium			mg/kg	NT	97
Molybdenum		2,600	mg/kg	NT	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	1.40	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	NT	<lod< td=""></lod<>
Tin			mg/kg	NT	<lod< td=""></lod<>
Antimony		180	mg/kg	NT	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	NT	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	0.044	<lod< td=""></lod<>
Lead	21	400	mg/kg	7.3 *	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	27,000	NT
Beryllium		410	mg/kg	<4.3	NT
Lithium	9.8	4,200	mg/kg	6.30	NT

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

J - Data qualified as estimated based on data validation

LOD – Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg – Milligrams per kilogram. Laboratory sample results are on a dry weight basis.

NT - Not Tested

Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

XRF – X-Ray Fluorescence

"--" – Not listed in MDEQ Part 201 Tables

< - Less than

* – Analyte detected below quantitation limits

			Sample Name	HUB-S1-01	HUB-S1-02	HUB-S1-03	HUB-S1-04	HUB-S1-05
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF
			Sample Number/					
			Location	Hubbell Sands	Hubbell Sands	Hubbell Sands	Hubbell Sands	Hubbell Sands
	Part 201	Part 201						
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals								
Titanium			mg/kg	2,461	5,025	7,446	3,877	3,766
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	84	465	553	293	279
Iron	12,000	160,000	mg/kg	8,074	42,706	56,880	38,684	34,038
Cobalt	6.8	2,600	mg/kg	118	585	455	628	416
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	<lod< td=""><td>826</td><td>619</td><td>672</td><td>714</td></lod<>	826	619	672	714
Zinc	47	170,000	mg/kg	14	59	64	43	58
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	55	26	4	37	51
Strontium		330,000	mg/kg	56	69	124	147	135
Zirconium			mg/kg	163	145	118	236	345
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>96</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>96</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>96</td><td><lod< td=""></lod<></td></lod<>	96	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT	NT

			Sample Name	HUB-S1-06	HUB-S1-07	HUB-S1-08	HUB-S1-09	HUB-S1-10
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF
			Sample Number/					
			Location	Hubbell Sands	Hubbell Sands	Hubbell Sands	Hubbell Sands	Hubbell Sands
	Part 201	Part 201						
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals								
Titanium			mg/kg	6,963	10,489	9,657	5,822	5,293
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	623	777	723	452	391
Iron	12,000	160,000	mg/kg	64,695	78,284	81,746	51,145	43,730
Cobalt	6.8	2,600	mg/kg	964	1,041	684	713	589
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	454	1,602	1,783	479	601
Zinc	47	170,000	mg/kg	71	91	100	57	59
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td>9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td><lod< td=""><td>9</td></lod<></td></lod<>	10	<lod< td=""><td>9</td></lod<>	9
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	9	9	10	24	15
Strontium		330,000	mg/kg	290	115	103	108	81
Zirconium			mg/kg	137	151	172	163	143
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT	NT

Table 6 - AOI 19 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 12, 2007

							ĺ	
			Sample Name	HUB-S1-12	HUB-S1-12	HUB-S1-13	HUB-S1-14	HUB-S1-15
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	Laboratory	XRF	XRF	XRF	XRF
			Sample Number/					
			Location	Hubbell Sands	Hubbell Sands	Hubbell Sands	Hubbell Sands	Hubbell Sands
	Part 201	Part 201						
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals								
Titanium			mg/kg	NT	9,496	9,739	7,684	7,893
Chromium	18	790,000	mg/kg	24	<lod< td=""><td><lod< td=""><td>269</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>269</td><td><lod< td=""></lod<></td></lod<>	269	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	320	744	665	480	549
Iron	12,000	160,000	mg/kg	NT	77,280	70,417	56,128	58,659
Cobalt	6.8	2,600	mg/kg	21	802	858	748	709
Nickel	20	40,000	mg/kg	39	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	6,000	2,996	448	315	488
Zinc	47	170,000	mg/kg	95	104	72	55	53
Arsenic	5.8	7.6	mg/kg	4.80	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	NT	17	12	13	13
Strontium		330,000	mg/kg	<220	115	200	290	246
Zirconium			mg/kg	NT	157	156	123	122
Molybdenum		2,600	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	0.99	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	0.0036 *	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	11	12	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	15,000	NT	NT	NT	NT
Beryllium		410	mg/kg	<4.5	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	12	NT	NT	NT	NT

		ı					
			Sample Name	HUB-S1-16	HUB-S1-17	HB-2-1	HB-2-2
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF
			Sample Number/				
			Location	Hubbell Sands	Hubbell Sands	Hubbell Sands	Hubbell Sands
	Part 201	Part 201					
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium			mg/kg	4,791	8,147	3,296	<lod< td=""></lod<>
Chromium	18	790,000	mg/kg	199	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	393	547	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	39,215	58,558	28,668	14,982
Cobalt	6.8	2,600	mg/kg	551	823	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	707	422	1,481	1,080
Zinc	47	170,000	mg/kg	61	56	29	18
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	33	14	60	55
Strontium		330,000	mg/kg	112	186	150	97
Zirconium			mg/kg	126	140	203	151
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td>65</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>65</td><td><lod< td=""></lod<></td></lod<>	65	<lod< td=""></lod<>
Tin			mg/kg	86	86	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

LOD – Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg – Milligrams per kilogram. Laboratory sample results are on a dry weight basis.

NT - Not Tested

Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

XRF - X-Ray Fluorescence

"--" - Not listed in MDEQ Part 201 Tables

* – Analyte detected below quantitiative limits

< – Less than

Table 7 - AOI 21 XRF Screening Results Torch Lake Area Assessment September 11, 2007

			Sample Name	HubbellB-2	HubbellB-3	HubbellB-4
			Sampling Date	09/11/07	09/11/07	09/11/07
			Sample Matrix	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF
			Sample Number/			Hubbell Slag
	Part 201	Part 201	Location	Hubbell Beach	Hubbell Beach	Dump
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg
Metals						
Titanium			mg/kg	19,379	1,799	4,164
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td>1,324</td></lod<></td></lod<>	<lod< td=""><td>1,324</td></lod<>	1,324
Manganese	440	25,000	mg/kg	372	<lod< td=""><td>406</td></lod<>	406
Iron	12,000	160,000	mg/kg	106,633	7,972	65,302
Cobalt	6.8	2,600	mg/kg	1,653	<lod< td=""><td>731</td></lod<>	731
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	57	260	3,994
Zinc	47	170,000	mg/kg	<lod< td=""><td>41</td><td>1,301</td></lod<>	41	1,301
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	37	51	28
Strontium		330,000	mg/kg	53	51	191
Zirconium			mg/kg	1,054	112	192
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td>76</td></lod<></td></lod<>	<lod< td=""><td>76</td></lod<>	76
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td>218</td></lod<></td></lod<>	<lod< td=""><td>218</td></lod<>	218
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td>59</td><td>223</td></lod<>	59	223

Table 7 - AOI 21 XRF Screening Results Torch Lake Area Assessment September 11, 2007

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

J - Data qualified as estimated based on data validation

LOD – Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg - Milligrams per kilogram

NT - Not Tested

Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL – MDEQ Part 201 Statewide Default Background Level

XRF – X-Ray Fluorescence

"--" – Not listed in MDEQ Part 201 Tables

* – Analyte detected below quantitiative limits

< – Less than

			Comple Nome	MineralB-4	MinamilD 5	MineralB-6	MineralB-6	MinamalD 7
			Sample Name		MineralB-5			MineralB-7
			Sampling Date	09/07/07	09/07/07	09/07/07	09/07/07	09/07/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	Laboratory	XRF	XRF
			Sample Number/					
	Part 201	Part 201	Location	Mineral Building	Mineral Building	Mineral Building	Mineral Building	Mineral Building
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals			5 ===.	<u> </u>	<u> </u>	υ υ υ	<u> </u>	8 8
Titanium	Τ		mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td>25,083</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td>25,083</td><td><lod< td=""></lod<></td></lod<>	NT	25,083	<lod< td=""></lod<>
Chromium	18	790,000	mg/kg	<lod< td=""><td>4,016</td><td>56</td><td>2,559</td><td>7,850</td></lod<>	4,016	56	2,559	7,850
Manganese	440	25,000	mg/kg	431	<lod< td=""><td>73</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	73	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	3,342	544,540	NT	230,173	455,401
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td><lod< td=""><td>48</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>48</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	48	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td>540</td><td>2,744</td><td>2,113</td></lod<></td></lod<>	<lod< td=""><td>540</td><td>2,744</td><td>2,113</td></lod<>	540	2,744	2,113
Copper	32	20,000	mg/kg	3,071	266,155	44,000 J	840,928	769,382
Zinc	47	170,000	mg/kg	962	154,989	5,400	15,367	261,353
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td>1,958</td><td>230</td><td>1,120</td><td>2,505</td></lod<>	1,958	230	1,120	2,505
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	15	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Strontium		330,000	mg/kg	82	192	<160	254	320
Zirconium			mg/kg	111	63	NT	107	82
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td>9.00</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9.00</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	9.00	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td>5,571</td><td>NT</td><td>16,434</td><td>12,713</td></lod<>	5,571	NT	16,434	12,713
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td>438</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td>438</td></lod<></td></lod<>	NT	<lod< td=""><td>438</td></lod<>	438
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td>0.022</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.022</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.022	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	41	3,489	1,900	13,208	8,782
Aluminum	6,900	50,000	mg/kg	NT	NT	3,200 J	NT	NT
Beryllium		410	mg/kg	NT	NT	<3.2	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	< 0.64	NT	NT

			G 1 17	10.0	10.0	3.61 173.40	15 15 14	3.61 175 4.4
			Sample Name	MineralB-8	MineralB-9	MineralB-10	MineralB-11	MineralB-11
			Sampling Date	09/07/07	09/07/07	09/07/07	09/07/07	09/07/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	Laboratory	XRF
			Sample Number/					
	Part 201	Part 201	Location	Mineral Building	Mineral Building	Mineral Building	Mineral Building	Mineral Building
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals								
Titanium			mg/kg	1,168	1,790	2,496	NT	6,729
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6.9 *</td><td>259</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6.9 *</td><td>259</td></lod<></td></lod<>	<lod< td=""><td>6.9 *</td><td>259</td></lod<>	6.9 *	259
Manganese	440	25,000	mg/kg	<lod< td=""><td><lod< td=""><td>247</td><td>180</td><td>1,018</td></lod<></td></lod<>	<lod< td=""><td>247</td><td>180</td><td>1,018</td></lod<>	247	180	1,018
Iron	12,000	160,000	mg/kg	8,453	17,512	21,836	NT	39,749
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6.90</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6.90</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>6.90</td><td><lod< td=""></lod<></td></lod<>	6.90	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td><lod< td=""></lod<></td></lod<>	24	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	643	7,253	2,276	17,000	24,251
Zinc	47	170,000	mg/kg	173	221	254	490 J	550
Arsenic	5.8	7.6	mg/kg	17	37	22	52	66
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Rubidium			mg/kg	14	39	25	NT	57
Strontium		330,000	mg/kg	93	91	45	<180	88
Zirconium			mg/kg	31	167	79	NT	214
Molybdenum		2,600	mg/kg	9	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>5.00</td><td>63</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>5.00</td><td>63</td></lod<></td></lod<>	<lod< td=""><td>5.00</td><td>63</td></lod<>	5.00	63
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Antimony		180	mg/kg	56	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.10</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.10</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.10</td><td><lod< td=""></lod<></td></lod<>	0.10	<lod< td=""></lod<>
Lead	21	400	mg/kg	27	126	122	280	401
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	6,200 J	NT
Beryllium		410	mg/kg	NT	NT	NT	0.5 *	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	4.70	NT

Table 8 - AOI 22 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 7, 2007

	1		1	
			MineralB-12	MineralB-13
			09/07/07	09/07/07
			Soil	Soil
			XRF	XRF
	Part 201	Part 201	Mineral Building	Mineral Building
Parameter	SDBL	RDCC	mg/kg	mg/kg
Metals			<u> </u>	<u> </u>
Titanium			14,342	<lod< td=""></lod<>
Chromium	18	790,000	291	<lod< td=""></lod<>
Manganese	440	25,000	359	1,034
Iron	12,000	160,000	77,669	5,702
Cobalt	6.8	2,600	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	40,000	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	1,075	3,442
Zinc	47	170,000	102	203
Arsenic	5.8	7.6	<lod< td=""><td>20</td></lod<>	20
Selenium	0.41	2,600	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			25	5
Strontium		330,000	311	143
Zirconium			165	30
Molybdenum		2,600	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	153	<lod< td=""></lod<>
Cadmium	1.2	550	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	<lod< td=""><td>78</td></lod<>	78
Aluminum	6,900	50,000	NT	NT
Beryllium		410	NT	NT
Lithium	9.8	4,200	NT	NT

Table 8 - AOI 22 XRF Screening and Laboratory Analytical Results Torch Lake Area Assessment September 7, 2007

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

J - Data qualified as estimated based on data validation

LOD - Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg – Milligrams per kilogram. Laboratory sample results are on a dry weight basis.

NT - Not Tested

Part 201-RDCC – MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

XRF - X-Ray Fluorescence

- "--" Not listed in MDEQ Part 201 Tables
- * Analyte detected below quantitiative limits

< - Less than

Table 9 - AOI 12 XRF Screening and Laboratory Analytical Results Torch Lake Area Assessment September 7 - September 12, 2007

				I			
			Sample Name	CalumetB-14	CalumetB-15	CalumetB-16	CalumetB-16
			Sampling Date	09/07/07	09/07/07	09/07/07	09/07/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	Laboratory	XRF
			Sample Number/			•	
	Part 201	Part 201	Location	Calumet Stamp Mill	Calumet Stamp Mill	Calumet Stamp Mill	Calumet Stamp Mill
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals				<u> </u>	<u> </u>	<u> </u>	<u> </u>
Titanium			mg/kg	<lod< td=""><td>13,818</td><td>NT</td><td>2,640</td></lod<>	13,818	NT	2,640
Chromium	18	790,000		<lod <lod< td=""><td><lod< td=""><td>28</td><td>2,040 <lod< td=""></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td>28</td><td>2,040 <lod< td=""></lod<></td></lod<>	28	2,040 <lod< td=""></lod<>
		,	mg/kg	<lod <lod< td=""><td>537</td><td></td><td></td></lod<></lod 	537		
Manganese	440	25,000 160,000	mg/kg			740 NT	<lod< td=""></lod<>
Iron	12,000		mg/kg	5,497	88,591		28,908
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td><lod< td=""><td>18</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>18</td><td><lod< td=""></lod<></td></lod<>	18	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td>49</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>49</td><td><lod< td=""></lod<></td></lod<>	49	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	345	1,120	10,000	4,023
Zinc	47	170,000	mg/kg	56	47	420 J	181
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td>36</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>36</td><td><lod< td=""></lod<></td></lod<>	36	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Rubidium			mg/kg	37	<lod< td=""><td>NT</td><td>25</td></lod<>	NT	25
Strontium		330,000	mg/kg	53	43	<340	82
Zirconium			mg/kg	84	136	NT	89
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td>146</td><td>2.40</td><td><lod< td=""></lod<></td></lod<>	146	2.40	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""></lod<></td></lod<>	NT	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td>0.23</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.23</td><td><lod< td=""></lod<></td></lod<>	0.23	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td><lod< td=""><td>1,100</td><td>432</td></lod<></td></lod<>	<lod< td=""><td>1,100</td><td>432</td></lod<>	1,100	432
Aluminum	6,900	50,000	mg/kg	NT	NT	13,000 J	NT
Beryllium		410	mg/kg	NT	NT	1.6 *	NT
Lithium	9.8	4,200	mg/kg	NT	NT	9.70	NT

Table 9 - AOI 12 XRF Screening and Laboratory Analytical Results Torch Lake Area Assessment September 7 - September 12, 2007

			Sample Name	CalumetB-17	LL-2-1	LL-2-2	LL-2-3
			Sampling Date	09/07/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF
			Sample Number/				
	Part 201	Part 201	Location	Calumet Stamp Mill	Lake Linden Sands	Lake Linden Sands	Lake Linden Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg
Metals							
Titanium			mg/kg	8,754	7,278	4,031	2,329
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	<lod< td=""><td>337</td><td>186</td><td><lod< td=""></lod<></td></lod<>	337	186	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	<lod< td=""><td>52,636</td><td>39,717</td><td>25,152</td></lod<>	52,636	39,717	25,152
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>207</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>207</td></lod<></td></lod<>	<lod< td=""><td>207</td></lod<>	207
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	31	733	401	823
Zinc	47	170,000	mg/kg	<lod< td=""><td>73</td><td>44</td><td>36</td></lod<>	73	44	36
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	7	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	11	25	21	47
Strontium		330,000	mg/kg	53	107	111	77
Zirconium			mg/kg	242	164	152	190
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td>55</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	55	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td>86</td><td>86</td></lod<></td></lod<>	<lod< td=""><td>86</td><td>86</td></lod<>	86	86
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	60	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td>17</td><td><lod< td=""><td>11</td></lod<></td></lod<>	17	<lod< td=""><td>11</td></lod<>	11
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT

Table 9 - AOI 12 XRF Screening and Laboratory Analytical Results

Torch Lake Area Assessment

September 7 - September 12, 2007

			I	T	I
		Sample Name	LL-2-4	LL-2-5	LL-2-6
		Sampling Date	09/12/07	09/12/07	09/12/07
		Sample Matrix	Soil	Soil	Soil
		Sample Type	XRF	XRF	XRF
		Sample Number/			
Part 201	Part 201	Location	Lake Linden Sands	Lake Linden Sands	Lake Linden Sands
SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg
		mg/kg	5,142	3,672	3,554
18	790,000	mg/kg	188	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
440	25,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
12,000	160,000	mg/kg	33,165	32,626	28,402
6.8	2,600	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
20	40,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
32	20,000	mg/kg	2,384	517	646
47	170,000	mg/kg	60	49	36
5.8	7.6	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
0.41	2,600	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
		mg/kg	64	36	50
	330,000	mg/kg	63	88	132
		mg/kg	301	195	279
	2,600	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
1	2,500	mg/kg	100	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
1.2	550	mg/kg	58	89	68
		mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
	180	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
75	37,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
0.13	160	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
21	400	mg/kg	17	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
6,900	50,000	mg/kg	NT	NT	NT
	410	mg/kg	NT	NT	NT
9.8	4,200	mg/kg	NT	NT	NT

Table 9 - AOI 12 XRF Screening and Laboratory Analytical Results Torch Lake Area Assessment September 7 - September 12, 2007

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

J - Data qualified as estimated based on data validation

LOD – Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg – Milligrams per kilogram

NT – Not Tested

Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

XRF – X-Ray Fluorescence

"--" – Not listed in MDEQ Part 201 Tables

* – Analyte detected below quantitiative limits

< – Less than

			Sample Name	C&H-XRF3	C&H-XRF4	C&H-XRF5	C&H-XRF6	C&H-XRF7
			Sampling Date	09/05/07	09/05/07	09/05/07	09/05/07	09/05/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF
			Sample Number/	C&H Power	C&H Power	C&H Power	C&H Power	C&H Power
	Part 201	Part 201	Location	Plant	Plant	Plant	Plant	Plant
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals	<u> </u>							
Titanium			mg/kg	<lod< th=""><th><lod< th=""><th>4,219</th><th>10,355</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>4,219</th><th>10,355</th><th><lod< th=""></lod<></th></lod<>	4,219	10,355	<lod< th=""></lod<>
Chromium	18	790,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Manganese	440	25,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Iron	12,000	160,000	mg/kg	4,793	406	3,956	628,850	6,609
Cobalt	6.8	2,600	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>143</th><th>47,378</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>143</th><th>47,378</th></lod<></th></lod<>	<lod< th=""><th>143</th><th>47,378</th></lod<>	143	47,378
Zinc	47	170,000	mg/kg	272	158	244	72	488
Arsenic	5.8	7.6	mg/kg	21	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Rubidium			mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>57</th><th>38</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>57</th><th>38</th></lod<></th></lod<>	<lod< th=""><th>57</th><th>38</th></lod<>	57	38
Strontium		330,000	mg/kg	564	464	401	553	761
Zirconium			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>119</td><td>54</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>119</td><td>54</td></lod<></td></lod<>	<lod< td=""><td>119</td><td>54</td></lod<>	119	54
Molybdenum		2,600	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>32</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>32</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>32</th></lod<></th></lod<>	<lod< th=""><th>32</th></lod<>	32
Silver	1	2,500	mg/kg	60	62	<lod< th=""><th><lod< th=""><th>105</th></lod<></th></lod<>	<lod< th=""><th>105</th></lod<>	105
Cadmium	1.2	550	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>80</th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>80</th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>80</th></lod<></th></lod<>	<lod< th=""><th>80</th></lod<>	80
Tin			mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Antimony		180	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Barium	75	37,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Mecury	0.13	160	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Lead	21	400	mg/kg	122	<lod< td=""><td>2,674</td><td>190</td><td>562</td></lod<>	2,674	190	562

			Sample Name	C&H-XRF8	C&H-XRF9	C&H-XRF10	C&H-XRF11	C&H-XRF12
			Sampling Date	09/05/07	09/05/07	09/05/07	09/05/07	09/05/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF
			Sample Number/	C&H Power	C&H Power	C&H Power	C&H Power	C&H Power
	Part 201	Part 201	Location	Plant	Plant	Plant	Plant	Plant
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals								
Titanium			mg/kg	6,373	<lod< td=""><td>3,956</td><td>2,872</td><td><lod< td=""></lod<></td></lod<>	3,956	2,872	<lod< td=""></lod<>
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>271</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>271</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>271</td><td><lod< td=""></lod<></td></lod<>	271	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	31,046	20,614	35,219	25,719	3,528
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	4,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	302	39	4,605	161	357,508
Zinc	47	170,000	mg/kg	33	<lod< td=""><td>61</td><td>60</td><td><lod< td=""></lod<></td></lod<>	61	60	<lod< td=""></lod<>
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>13</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>13</td><td><lod< td=""></lod<></td></lod<>	13	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	33	26	76	57	<lod< td=""></lod<>
Strontium	NA	330,000	mg/kg	564	83	110	192	63
Zirconium			mg/kg	162	52	382	157	<lod< td=""></lod<>
Molybdenum	NA	2,600	mg/kg	12	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td>113</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>113</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	113	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td>66</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>66</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	66	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony	NA	180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	30	<lod< td=""><td>22</td><td>13</td><td>121</td></lod<>	22	13	121

			Comple Nome	C&H-XRF13	C&H-XRF14	C&H-XRF15
			Sample Name			
			Sampling Date	09/05/07	09/05/07	09/05/07
			Sample Matrix	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF
			Sample Number/	C&H Power	C&H Power	C&H Power
	Part 201	Part 201	Location	Plant	Plant	Plant
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg
Metals						
Titanium			mg/kg	<lod< td=""><td>3,082</td><td>1,505</td></lod<>	3,082	1,505
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	46,303	10,542	13,184
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	4,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	2,735,217	274	5,377
Zinc	47	170,000	mg/kg	<lod< td=""><td>19</td><td><lod< td=""></lod<></td></lod<>	19	<lod< td=""></lod<>
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	<lod< td=""><td>62</td><td>64</td></lod<>	62	64
Strontium	NA	330,000	mg/kg	146	55	22
Zirconium			mg/kg	104	221	131
Molybdenum	NA	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony	NA	180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	518	15	<lod< td=""></lod<>

NOTES:

< - Less than

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

LOD - Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg - Milligrams per kilogram

NT - Not Tested

Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

XRF - X-Ray Fluorescence

"--" - Not listed in MDEQ Part 201 Tables

Table 11 - AOI 24 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 12, 2007

				I	ı			
			Sample Name	LL-2-7	LL-S2-8	LL-2-8	LL-2'-8	LL-2-9
			Sampling Date	09/12/07	09/12/07	09/12/07	09/12/07	09/12/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	Laboratory	XRF	XRF	XRF
			Sample Number/	Torch Lake	Torch Lake	Torch Lake	Torch Lake	Torch Lake
	Part 201	Part 201	Location	Backwater Area	Backwater Area	Backwater Area	Backwater Area	Backwater Area
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals								
Titanium			mg/kg	3,393	NT	1,605	2,255	4,855
Chromium	18	790,000	mg/kg	<lod< td=""><td>20 J</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	20 J	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	<lod< td=""><td>350</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	350	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	25,196	NT	20,383	21,498	34,617
Cobalt	6.8	2,600	mg/kg	<lod< td=""><td>14 J</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	14 J	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td>34 J</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	34 J	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	623	2,100 J	4,620	602	7,731
Zinc	47	170,000	mg/kg	31	130	29	41	<lod< td=""></lod<>
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td>1.1 J *</td><td>9</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	1.1 J *	9	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	48	NT	38	42	58
Strontium		330,000	mg/kg	106	<270	71	109	120
Zirconium			mg/kg	288	NT	249	270	277
Molybdenum		2,600	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td>1.3 J</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	1.3 J	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	57	NT	<lod< td=""><td>51</td><td><lod< td=""></lod<></td></lod<>	51	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td>0.029</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.029	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td>6.9 J *</td><td>13</td><td>8</td><td>16</td></lod<>	6.9 J *	13	8	16
Aluminum	6,900	50,000	mg/kg	NT	11,000 J	NT	NT	NT
Beryllium		410	mg/kg	NT	0.94 J *	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	6.00	NT	NT	NT

Table 11 - AOI 24 XRF Screening and Laboratory Analytical Results Torch Lake Area Assessment September 12, 2007

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000)

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

LOD – Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg – Milligrams per kilogram. Laboratory sample results are on a dry weight basis.

NT - Not Tested

Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

U.S. EPA – United States Environmental Protection Agency

XRF - X-Ray Fluorescence

"--" - Not listed in MDEQ Part 201 Tables

- J Data qualified as estimated based on data validation
- * Analyte detected below quantitation limits
- < Less than

Table 12 - AOI 25 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 11, 2007

									ı
			Sample Name	TraprockB-5	TraprockB-6	TraprockB-7	TraprockB-8	TraprockB-8	TraprockB-9
			Sampling Date	09/11/07	09/11/07	09/11/07	09/11/07	09/11/07	09/11/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	Laboratory	XRF	XRF
			Sample Number/	Traprock Slag	Traprock Slag	Traprock Slag	Traprock Slag	Traprock Slag	Traprock Slag
	Part 201	Part 201	Location	Dump	Dump	Dump	Dump	Dump	Dump
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals									
Titanium			mg/kg	3,995	8,194	<lod< th=""><th>NT</th><th>2,505</th><th>3,559</th></lod<>	NT	2,505	3,559
Chromium	18	790,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>4.5 J *</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>4.5 J *</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>4.5 J *</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	4.5 J *	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Manganese	440	25,000	mg/kg	262	1,362	<lod< th=""><th>390</th><th>217</th><th><lod< th=""></lod<></th></lod<>	390	217	<lod< th=""></lod<>
Iron	12,000	160,000	mg/kg	31,322	79,835	6,214	NT	10,175	11,147
Cobalt	6.8	2,600	mg/kg	578	924	173	9.4 J	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Nickel	20	40,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>30 J</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>30 J</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>30 J</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	30 J	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Copper	32	20,000	mg/kg	2,619	288	382	360 J	148	223
Zinc	47	170,000	mg/kg	66	388	34	95	70	82
Arsenic	5.8	7.6	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>4.6 J</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>4.6 J</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>4.6 J</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	4.6 J	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	NT	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Rubidium			mg/kg	75	11	5	NT	44	16
Strontium		330,000	mg/kg	86	169	27	<250	116	505
Zirconium			mg/kg	367	92	34	NT	137	188
Molybdenum		2,600	mg/kg	<lod< th=""><th><lod< th=""><th>26</th><th>NT</th><th><lod< th=""><th>21</th></lod<></th></lod<></th></lod<>	<lod< th=""><th>26</th><th>NT</th><th><lod< th=""><th>21</th></lod<></th></lod<>	26	NT	<lod< th=""><th>21</th></lod<>	21
Silver	1	2,500	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>1.7 J</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>1.7 J</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>1.7 J</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	1.7 J	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	NT	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Tin			mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	NT	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Antimony		180	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	NT	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Barium	75	37,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>NT</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	NT	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Mecury	0.13	160	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0.052</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0.052</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.052</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	0.052	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Lead	21	400	mg/kg	<lod< th=""><th>27</th><th>24</th><th>48 J</th><th>38</th><th>90</th></lod<>	27	24	48 J	38	90
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	9,800 J	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	0.59 J *	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	7.30	NT	NT

Table 12 - AOI 25 XRF Screening and Laboratory Analytical Results
Torch Lake Area Assessment
September 11, 2007

Ĭr .		ı				ı		ı	
			Sample Name	TraprockB-10	TraprockB-11	TraprockB-12	TraprockB-12	TraprockB-13	TraprockB-14
			Sampling Date	09/11/07	09/11/07	09/11/07	09/11/07	09/11/07	09/11/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	Laboratory	XRF	XRF	XRF
			Sample Number/	Traprock Slag	Traprock Slag	Traprock Slag	Traprock Slag	Traprock Slag	Traprock Slag
	Part 201	Part 201	Location	Dump	Dump	Dump	Dump	Dump	Dump
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals									
Titanium			mg/kg	2,691	12,948	NT	4,282	4,932	<lod< td=""></lod<>
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><11 J</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><11 J</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<11 J	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	219	1,842	17	<lod< td=""><td><lod< td=""><td>288</td></lod<></td></lod<>	<lod< td=""><td>288</td></lod<>	288
Iron	12,000	160,000	mg/kg	27,244	82,869	NT	24,745	10,904	2,252
Cobalt	6.8	2,600	mg/kg	393	<lod< td=""><td>0.44 J *</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.44 J *	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td>1.2 J *</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.2 J *</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	1.2 J *	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	184	446	47 J	98	66	<lod< td=""></lod<>
Zinc	47	170,000	mg/kg	225	<lod< td=""><td>14</td><td>85</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	14	85	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Arsenic	5.8	7.6	mg/kg	33	<lod< td=""><td>4.2 J</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	4.2 J	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td>6</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td>6</td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td>6</td></lod<></td></lod<>	<lod< td=""><td>6</td></lod<>	6
Rubidium			mg/kg	41	47	NT	86	47	<lod< td=""></lod<>
Strontium		330,000	mg/kg	293	855	440	266	106	43
Zirconium			mg/kg	155	237	NT	139	316	63
Molybdenum		2,600	mg/kg	15	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td>118</td><td>0.18 J</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	118	0.18 J	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td>0.0047</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.0047</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.0047	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	241	<lod< td=""><td>17 J</td><td>192</td><td>15</td><td><lod< td=""></lod<></td></lod<>	17 J	192	15	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	13,000 J	NT	NT	NT
Beryllium Lithium	9.8	410 4,200	mg/kg	NT NT	NT NT	1.4 J * 11	NT NT	NT NT	NT NT
Liuiiuiii	9.0	4,200	mg/kg	1 N 1	1 N 1	11	1N 1	1 1 1	1N 1

Table 12 - AOI 25 XRF Screening and Laboratory Analytical Results Torch Lake Area Assessment September 11, 2007

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000)

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

J - Data qualified as estimated based on data validation

LOD – Level of Detection for the Innov-X XRF Instrument

MDEQ - Michigan Department of Environmental Quality

mg/kg – Milligrams per kilogram. Laboratory sample results are on a dry weight basis.

NT - Not Tested

Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

XRF - X-Ray Fluorescence

"--" - Not listed in MDEQ Part 201 Tables

* – Analyte detected below quantitation limits

< – Less than

			Sample Name	BootjackB-15	BootjackB-16	BootjackB-17
			Sampling Date	09/12/07	09/12/07	09/12/07
			Sampling Date Sample Matrix	Soil	Soil	Soil
			Sample Type	XRF	XRF	Laboratory
			Sample Number/	Bootjack	Bootjack	Bootjack
	Part 201	Part 201	Location	Stampsand	Stampsand	Stampsand
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg
Metals						
Titanium			mg/kg	5,830	5,830	NT
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><9.9 J</td></lod<></td></lod<>	<lod< td=""><td><9.9 J</td></lod<>	<9.9 J
Manganese	440	25,000	mg/kg	740	740	48
Iron	12,000	160,000	mg/kg	52,547	52,547	NT
Cobalt	6.8	2,600	mg/kg	654	654	1.7 J *
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td>5.3 J *</td></lod<></td></lod<>	<lod< td=""><td>5.3 J *</td></lod<>	5.3 J *
Copper	32	20,000	mg/kg	1,943	1,943	110 J
Zinc	47	170,000	mg/kg	64	64	26
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td>1.7 J</td></lod<></td></lod<>	<lod< td=""><td>1.7 J</td></lod<>	1.7 J
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td></lod<></td></lod<>	<lod< td=""><td>NT</td></lod<>	NT
Rubidium			mg/kg	24	24	NT
Strontium		330,000	mg/kg	165	165	<250
Zirconium			mg/kg	220	220	NT
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td></lod<></td></lod<>	<lod< td=""><td>NT</td></lod<>	NT
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td>0.064 J *</td></lod<></td></lod<>	<lod< td=""><td>0.064 J *</td></lod<>	0.064 J *
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td></lod<></td></lod<>	<lod< td=""><td>NT</td></lod<>	NT
Tin			mg/kg	<lod< td=""><td><lod< td=""><td>NT</td></lod<></td></lod<>	<lod< td=""><td>NT</td></lod<>	NT
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td></lod<></td></lod<>	<lod< td=""><td>NT</td></lod<>	NT
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td>NT</td></lod<></td></lod<>	<lod< td=""><td>NT</td></lod<>	NT
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td>0.016</td></lod<></td></lod<>	<lod< td=""><td>0.016</td></lod<>	0.016
Lead	21	400	mg/kg	<lod< td=""><td><lod< td=""><td>23 J</td></lod<></td></lod<>	<lod< td=""><td>23 J</td></lod<>	23 J
Aluminum	6,900	50,000	mg/kg	NT	NT	2,600 J
Beryllium		410	mg/kg	NT	NT	<5 J
Lithium	9.8	4,200	mg/kg	NT	NT	2.60

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

J – Data qualified as estimated based on data validation

LOD – Level of Detection for the Innov-X XRF Instrument

MDEQ – Michigan Department of Environmental Quality

mg/kg – Milligrams per kilogram. Laboratory sample results are on a dry weight basis.

NT – Not Tested

Part 201-RDCC – MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level

XRF – X-Ray Fluorescence

- "--" Not listed in MDEQ Part 201 Tables
- * Analyte detected below quantitation limits
- < Less than

Table 14 - AOI 14 XRF Screening and Laboratory Analytical Results
Torch Lake Site Assessment
September 10, 2007

			ı							I	
			Sample Name	GayB-2	GayB-3	GayB-4	GayB-5	GayB-6	GayB-6	GayB-7	GayB-8
			Sampling Date	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	Laboratory	XRF	XRF	XRF
			Sample Number/	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands
	Part 201	Part 201	Location	Ruins	Ruins	Ruins	Ruins	Ruins	Ruins	Ruins	Ruins
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals											
Titanium			mg/kg	6,743	11,503	11,224	22,214	NT	30,265	7,908	20,461
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	16	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	614	625	791	1,323	270	<lod< td=""><td>844</td><td><lod< td=""></lod<></td></lod<>	844	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	149,596	84,797	85,090	296,329	NT	368,539	75,486	268,277
Cobalt	6.8	2,600	mg/kg	1,278	1,078	799	<lod< td=""><td>13</td><td><lod< td=""><td>775</td><td><lod< td=""></lod<></td></lod<></td></lod<>	13	<lod< td=""><td>775</td><td><lod< td=""></lod<></td></lod<>	775	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>33</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>33</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>33</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>33</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	33	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,421	2,586	1,371	450,143	320,000	653,430	9,606	596,985
Zinc	47	170,000	mg/kg	243	76	94	<lod< td=""><td>180 J</td><td><lod< td=""><td>212</td><td><lod< td=""></lod<></td></lod<></td></lod<>	180 J	<lod< td=""><td>212</td><td><lod< td=""></lod<></td></lod<>	212	<lod< td=""></lod<>
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>325</td><td>350</td><td>409</td><td><lod< td=""><td>325</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>325</td><td>350</td><td>409</td><td><lod< td=""><td>325</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>325</td><td>350</td><td>409</td><td><lod< td=""><td>325</td></lod<></td></lod<>	325	350	409	<lod< td=""><td>325</td></lod<>	325
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td><td>NT</td><td>46</td><td><lod< td=""><td>34</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td><td>NT</td><td>46</td><td><lod< td=""><td>34</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>21</td><td>NT</td><td>46</td><td><lod< td=""><td>34</td></lod<></td></lod<>	21	NT	46	<lod< td=""><td>34</td></lod<>	34
Rubidium			mg/kg	12	<lod< td=""><td><lod< td=""><td>20</td><td>NT</td><td>21</td><td>19</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>20</td><td>NT</td><td>21</td><td>19</td><td><lod< td=""></lod<></td></lod<>	20	NT	21	19	<lod< td=""></lod<>
Strontium		330,000	mg/kg	95	256	132	166	<230	228	170	153
Zirconium			mg/kg	122	144	139	<lod< td=""><td>NT</td><td><lod< td=""><td>166</td><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td>166</td><td><lod< td=""></lod<></td></lod<>	166	<lod< td=""></lod<>
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1,971</td><td>220</td><td>2,941</td><td>111</td><td>2,646</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1,971</td><td>220</td><td>2,941</td><td>111</td><td>2,646</td></lod<></td></lod<>	<lod< td=""><td>1,971</td><td>220</td><td>2,941</td><td>111</td><td>2,646</td></lod<>	1,971	220	2,941	111	2,646
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	1.30	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	88	20	<lod< td=""><td>95</td><td>290</td><td><lod< td=""><td>144</td><td><lod< td=""></lod<></td></lod<></td></lod<>	95	290	<lod< td=""><td>144</td><td><lod< td=""></lod<></td></lod<>	144	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	8,200 J	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT	0.52 *	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT	3	NT	NT	NT

Table 14 - AOI 14 XRF Screening and Laboratory Analytical Results
Torch Lake Site Assessment
September 10, 2007

			Sample Name	GayB-9	GayB-11	GayB-11	GayB-12	GayB-13	GayB-14	GayB-14	GayB-15
			Sampling Date	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	Laboratory	XRF	XRF	XRF	Laboratory	XRF	XRF
			Sample Number/	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands
	Part 201	Part 201	Location	Ruins	Ruins	Ruins	Ruins	Ruins	Ruins	Ruins	Ruins
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals											
Titanium			mg/kg	11,513	NT	16,167	14,455	10,290	NT	8,885	6,235
Chromium	18	790,000	mg/kg	<lod< td=""><td>45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	45	<lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>61</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>61</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	61	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	995	200	918	782	501	610	660	1,980
Iron	12,000	160,000	mg/kg	92,730	NT	94,199	79,604	59,432	NT	61,926	367,120
Cobalt	6.8	2,600	mg/kg	655	14	<lod< td=""><td>870</td><td><lod< td=""><td>12</td><td>512</td><td><lod< td=""></lod<></td></lod<></td></lod<>	870	<lod< td=""><td>12</td><td>512</td><td><lod< td=""></lod<></td></lod<>	12	512	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td>39</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>31</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	39	<lod< td=""><td><lod< td=""><td><lod< td=""><td>31</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>31</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>31</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	31	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	17,720	430,000	286,596	1,624	1,219	990	1,073	1,082
Zinc	47	170,000	mg/kg	372	97 J	<lod< td=""><td>82</td><td>53</td><td>14,000 J</td><td>10,509</td><td>1,258</td></lod<>	82	53	14,000 J	10,509	1,258
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td>670</td><td>370</td><td>27</td><td><lod< td=""><td>58</td><td>132</td><td>46</td></lod<></td></lod<>	670	370	27	<lod< td=""><td>58</td><td>132</td><td>46</td></lod<>	58	132	46
Selenium	0.41	2,600	mg/kg	<lod< td=""><td>NT</td><td>18</td><td><lod< td=""><td><lod< td=""><td>NT</td><td>13</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	NT	18	<lod< td=""><td><lod< td=""><td>NT</td><td>13</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td>13</td><td><lod< td=""></lod<></td></lod<>	NT	13	<lod< td=""></lod<>
Rubidium			mg/kg	7	NT	<lod< td=""><td>67</td><td>24</td><td>NT</td><td>28</td><td>17</td></lod<>	67	24	NT	28	17
Strontium		330,000	mg/kg	167	<240	159	236	182	< 200	124	200
Zirconium			mg/kg	122	NT	<lod< td=""><td>199</td><td>142</td><td>NT</td><td>103</td><td>110</td></lod<>	199	142	NT	103	110
Molybdenum	-	2,600	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	148	150	1,127	<lod< td=""><td><lod< td=""><td>0.94</td><td>111</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.94</td><td>111</td><td><lod< td=""></lod<></td></lod<>	0.94	111	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td>0.63</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.026</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.63	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.026</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.026</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.026</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.026	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	198	82	<lod< td=""><td>38</td><td>19</td><td>850</td><td>698</td><td>123</td></lod<>	38	19	850	698	123
Aluminum	6,900	50,000	mg/kg	NT	7,200 J	NT	NT	NT	11,000 J	NT	NT
Beryllium		410	mg/kg	NT	0.8 *	NT	NT	NT	<4.1	NT	NT
Lithium	9.8	4,200	mg/kg	NT	2.90	NT	NT	NT	5.00	NT	NT

Table 14 - AOI 14 XRF Screening and Laboratory Analytical Results
Torch Lake Site Assessment
September 10, 2007

			C IN	G D 16	CAN 01 01	GAN 61 02	GAN 61 02	GAN 61 04	GAN 61 05	CAN 01 06	GAN 61 07
			Sample Name	GayB-16	GAY-S1-01		GAY-S1-03		GAY-S1-05		
			Sampling Date	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF
			Sample Number/	Gay Sands							
	Part 201	Part 201	Location	Ruins	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals											
Titanium			mg/kg	10,134	10,171	10,673	9,024	11,671	10,912	<lod< th=""><th>13,812</th></lod<>	13,812
Chromium	18	790,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Manganese	440	25,000	mg/kg	651	577	663	693	769	660	<lod< th=""><th>617</th></lod<>	617
Iron	12,000	160,000	mg/kg	74,650	80,898	79,501	67,592	84,928	80,635	78,331	78,670
Cobalt	6.8	2,600	mg/kg	642	705	681	690	822	834	<lod< td=""><td>764</td></lod<>	764
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,122	1,504	1,640	1,153	1,237	2,590	3,867	1,750
Zinc	47	170,000	mg/kg	595	91	100	66	97	111	<lod< td=""><td>106</td></lod<>	106
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td></lod<></td></lod<>	<lod< td=""><td>11</td></lod<>	11
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	20	9	10	14	10	9	<lod< td=""><td>14</td></lod<>	14
Strontium		330,000	mg/kg	155	115	118	153	82	136	169	121
Zirconium			mg/kg	105	155	140	129	158	143	<lod< td=""><td>158</td></lod<>	158
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>96</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>96</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>96</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>96</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>96</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	96	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Barium	75	37,000	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Mecury	0.13	160	mg/kg	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Lead	21	400	mg/kg	45	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT

Table 14 - AOI 14 XRF Screening and Laboratory Analytical Results
Torch Lake Site Assessment
September 10, 2007

		I					I			1	1
			Sample Name	GAY-S1-08	GAY-S1-09	GAY-S1-10	GAY-S1-11	GAY-S1-12	GAY-S1-13	GAY-S1-14	
			Sampling Date	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF
			Sample Number/								
	Part 201	Part 201	Location	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals											
Titanium			mg/kg	8,750	10,213	10,463	11,121	10,560	8,508	9,451	9,974
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	547	514	621	787	641	584	623	595
Iron	12,000	160,000	mg/kg	69,174	75,427	74,525	77,926	73,338	68,150	69,781	69,246
Cobalt	6.8	2,600	mg/kg	797	793	572	663	961	904	855	857
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	2,655	1,788	1,438	1,584	1,691	1,378	1,503	1,608
Zinc	47	170,000	mg/kg	90	89	96	93	68	72	94	68
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	13	13	9	13	10	14	14	17
Strontium		330,000	mg/kg	160	118	87	113	115	83	128	147
Zirconium			mg/kg	131	147	143	158	142	143	143	136
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>570</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>570</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>570</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>570</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>570</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	570	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT

Table 14 - AOI 14 XRF Screening and Laboratory Analytical Results
Torch Lake Site Assessment
September 10, 2007

			G 1 1 1	G 1 7 7 G 1 4 6	G 1 7 7 G 1 4 5	G 1 7 7 G 1 1 0	G 1 7 7 G 1 4 0	G + X × G + 20	G 1 X 7 G 1 G 1	G 1 X 7 G 1 G 1	G + T + G + 22
			Sample Name						GAY-S1-21	GAY-S1-21	GAY-S1-22
			Sampling Date	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF	Laboratory	XRF	XRF
			Sample Number/								
	Part 201	Part 201	Location	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals											
Titanium			mg/kg	9,917	10,636	8,842	10,269	11,052	NT	9,116	10,956
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>19 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	19 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	727	747	648	605	718	300	463	437
Iron	12,000	160,000	mg/kg	72,488	76,196	77,658	71,544	77,381	NT	67,952	78,651
Cobalt	6.8	2,600	mg/kg	612	770	787	754	634	18 J	660	968
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>23 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>23 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>23 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	23 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,363	1,498	1,449	1,399	1,822	1,400 J	1,365	4,132
Zinc	47	170,000	mg/kg	86	69	84	76	90	62 J	76	71
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.67 J *</td><td>9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.67 J *</td><td>9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.67 J *</td><td>9</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.67 J *</td><td>9</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.67 J *</td><td>9</td><td><lod< td=""></lod<></td></lod<>	0.67 J *	9	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	21	13	14	6	16	NT	11	10
Strontium		330,000	mg/kg	106	108	129	113	103	<210	90	64
Zirconium			mg/kg	138	149	156	139	146	NT	147	154
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.8 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.8 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.8 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.8 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.8 J</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.8 J	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td>86</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td>86</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td>86</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td>86</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td>86</td><td><lod< td=""></lod<></td></lod<>	NT	86	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>NT</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	NT	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.0055 *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.0055 *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.0055 *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.0055 *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.0055 *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.0055 *	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.5 J *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.5 J *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.5 J *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.5 J *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1.5 J *</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	1.5 J *	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	NT	15,000 J	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT	NT	<4.3 J	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT	NT	5.10	NT	NT

Table 14 - AOI 14 XRF Screening and Laboratory Analytical Results
Torch Lake Site Assessment
September 10, 2007

									I	I	
				GAY-S1-23i							
			Sampling Date	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF
			Sample Number/								
	Part 201	Part 201	Location	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals											
Titanium			mg/kg	10,414	8,978	10,630	10,800	15,367	7,414	11,585	11,931
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	585	687	674	747	988	574	553	781
Iron	12,000	160,000	mg/kg	72,208	80,007	82,089	79,444	99,957	73,580	76,728	81,050
Cobalt	6.8	2,600	mg/kg	891	1,293	745	885	956	819	609	878
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,028	1,097	2,222	4,484	1,617	2,028	1,828	1,855
Zinc	47	170,000	mg/kg	76	83	109	99	109	83	86	91
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<>	<lod< td=""><td>10</td></lod<>	10
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium			mg/kg	6	6	9	10	12	21	18	8
Strontium		330,000	mg/kg	79	101	91	106	111	128	110	89
Zirconium			mg/kg	127	138	156	149	183	196	139	160
Molybdenum		2,600	mg/kg	13	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>91</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	91	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT

Table 14 - AOI 14 XRF Screening and Laboratory Analytical Results
Torch Lake Site Assessment
September 10, 2007

		I					l		T	l	
			Sample Name		GAY-S1-32	GAY2-001	GAY2-002	GAY2-003		GAY2-005	GAY2-006
			Sampling Date	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07	09/10/07
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Type	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF
			Sample Number/								
	Part 201	Part 201	Location	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands	Gay Sands
Parameter	SDBL	RDCC	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metals											
Titanium			mg/kg	11,393	9,286	7,806	8,975	8,622	9,812	10,590	6,915
Chromium	18	790,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Manganese	440	25,000	mg/kg	740	820	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>232</td><td>229</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>232</td><td>229</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>232</td><td>229</td></lod<></td></lod<>	<lod< td=""><td>232</td><td>229</td></lod<>	232	229
Iron	12,000	160,000	mg/kg	78,330	77,792	59,779	69,585	71,179	68,757	76,564	54,697
Cobalt	6.8	2,600	mg/kg	752	681	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,628	1,648	1,652	3,124	859	1,176	965	2,509
Zinc	47	170,000	mg/kg	105	83	<lod< td=""><td><lod< td=""><td>47</td><td>77</td><td>64</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>47</td><td>77</td><td>64</td><td><lod< td=""></lod<></td></lod<>	47	77	64	<lod< td=""></lod<>
Arsenic	5.8	7.6	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Rubidium	-		mg/kg	13	10	5	<lod< td=""><td>13</td><td>25</td><td>25</td><td>14</td></lod<>	13	25	25	14
Strontium		330,000	mg/kg	115	106	106	158	75	77	137	71
Zirconium			mg/kg	143	152	108	120	149	146	142	131
Molybdenum		2,600	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>85</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>85</td><td><lod< td=""></lod<></td></lod<>	85	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""><td>607</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	607	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Lead	21	400	mg/kg	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Aluminum	6,900	50,000	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT
Beryllium		410	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT
Lithium	9.8	4,200	mg/kg	NT	NT	NT	NT	NT	NT	NT	NT

Table 14 - AOI 14 XRF Screening and Laboratory Analytical Results Torch Lake Site Assessment September 10, 2007

	1	1		T
			Sample Name	GAY2-007
			Sampling Date	09/10/07
			Sample Matrix	Soil
			Sample Type	XRF
			Sample Number/	
	Part 201	Part 201	Location	Gay Sands
Parameter	SDBL	RDCC	Units	mg/kg
Metals				
Titanium			mg/kg	10,897
Chromium	18	790,000	mg/kg	262
Manganese	440	25,000	mg/kg	<lod< td=""></lod<>
Iron	12,000	160,000	mg/kg	91,425
Cobalt	6.8	2,600	mg/kg	<lod< td=""></lod<>
Nickel	20	40,000	mg/kg	<lod< td=""></lod<>
Copper	32	20,000	mg/kg	1,306
Zinc	47	170,000	mg/kg	47
Arsenic	5.8	7.6	mg/kg	<lod< td=""></lod<>
Selenium	0.41	2,600	mg/kg	<lod< td=""></lod<>
Rubidium			mg/kg	<lod< td=""></lod<>
Strontium		330,000	mg/kg	150
Zirconium			mg/kg	153
Molybdenum		2,600	mg/kg	<lod< td=""></lod<>
Silver	1	2,500	mg/kg	<lod< td=""></lod<>
Cadmium	1.2	550	mg/kg	<lod< td=""></lod<>
Tin			mg/kg	<lod< td=""></lod<>
Antimony		180	mg/kg	<lod< td=""></lod<>
Barium	75	37,000	mg/kg	<lod< td=""></lod<>
Mecury	0.13	160	mg/kg	<lod< td=""></lod<>
Lead	21	400	mg/kg	15
Aluminum	6,900	50,000	mg/kg	NT
Beryllium		410	mg/kg	NT
Lithium	9.8	4,200	mg/kg	NT

NOTES:

Screening conducted utilizing Innov-X-XRF (Model X-4000).

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

AOI - Area of Investigation

J – Data qualified as estimated based on data validation

LOD – Level of Detection for the Innov-X XRF Instrument

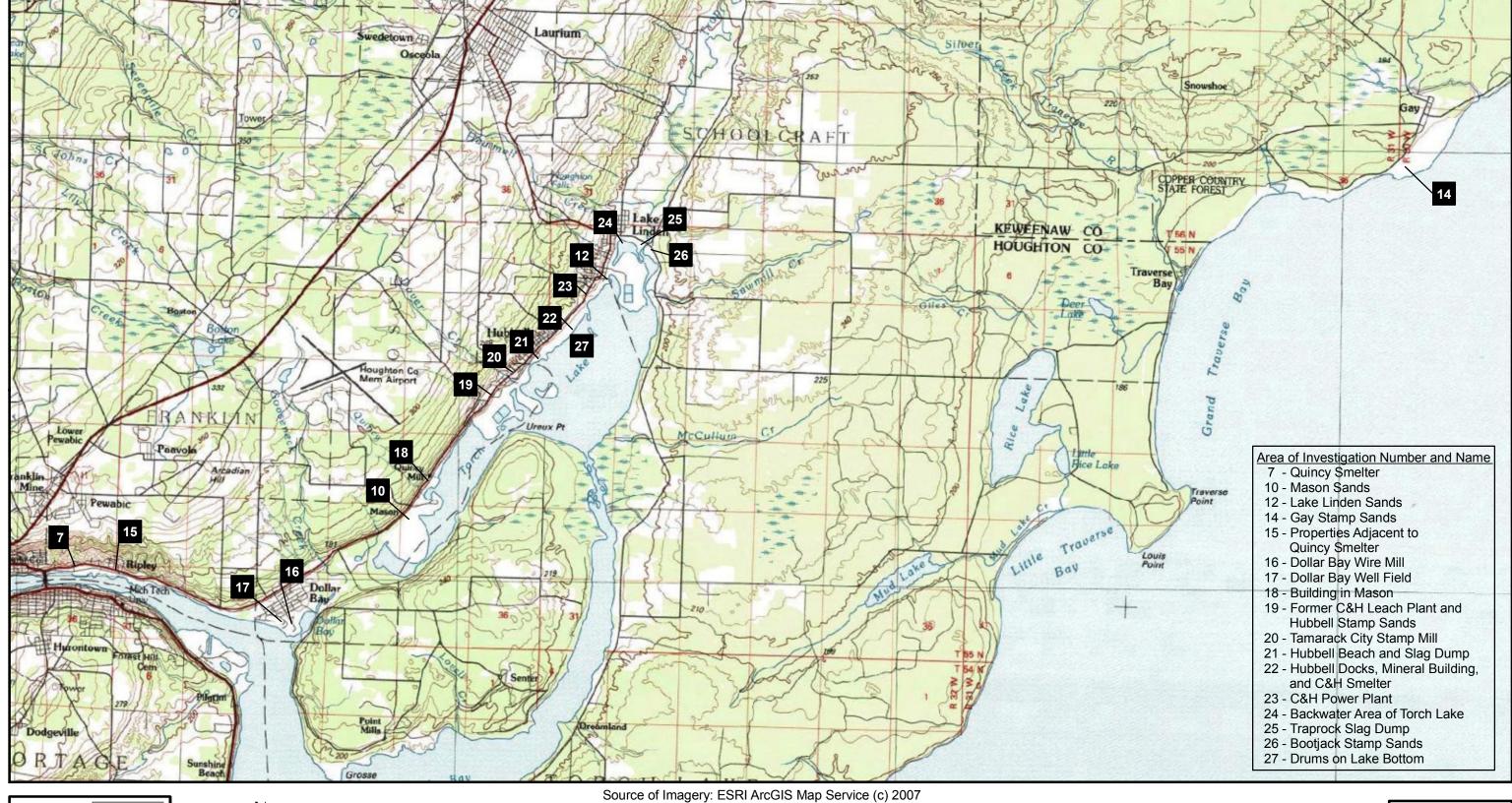
MDEQ – Michigan Department of Environmental Quality

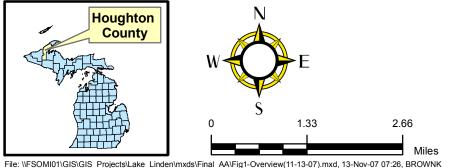
mg/kg – Milligrams per kilogram. Laboratory sample results are on a dry weight basis.

NT – Not Tested

Part 201-RDCC – MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL – MDEQ Part 201 Statewide Default Background Level


XRF – X-Ray Fluorescence


"--" – Not listed in MDEQ Part 201 Tables

* – Analyte detected below quantitation limits

< - Less than

FIGURES

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

WESTON SOLUTIONS, INC 2501 Jolly Road, Suite 100 Okemos, Michigan

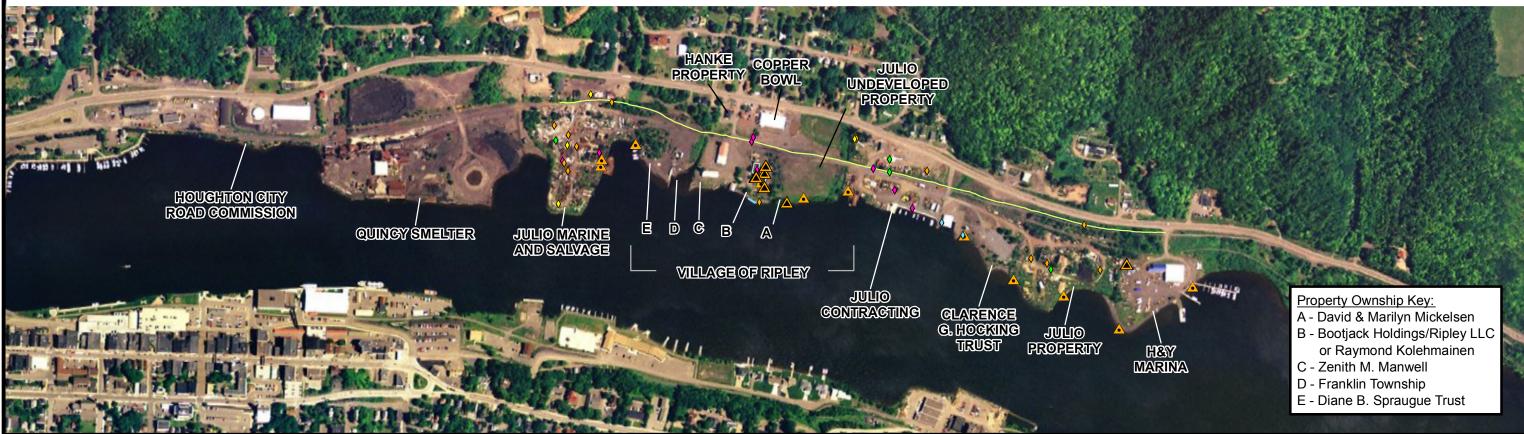
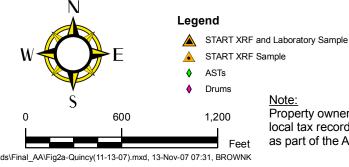

SITE LOCATION/AREA OF INVESTIGATION LAYOUT MAP TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 1



Source of Imagery: ESRI ArcGIS Map Service (c) 2007

Date of Photography: 06/21/2005

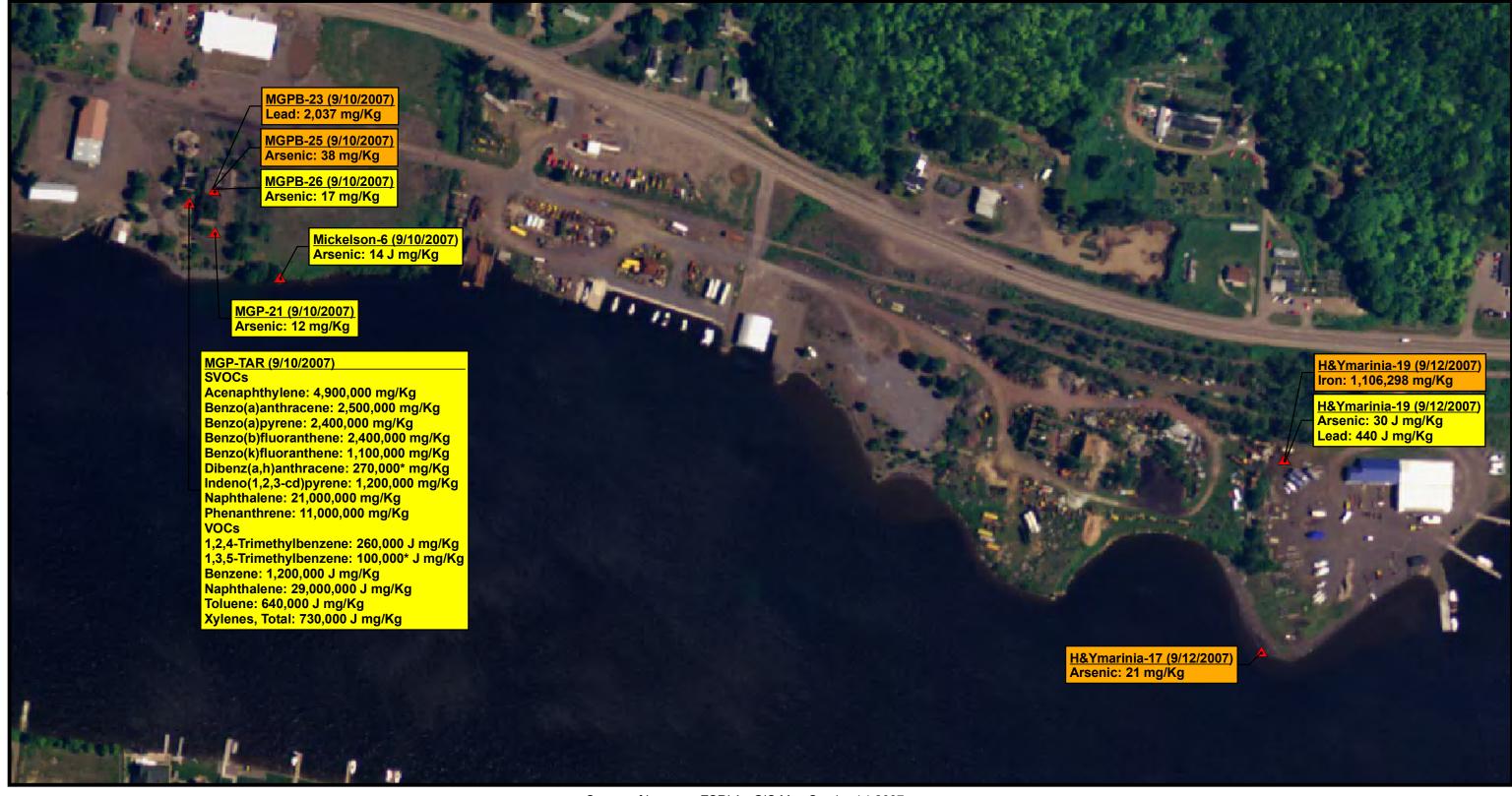
Building Outline Water Edge Hancock/Ripley GPS Feature - Other

Property ownership is based on a cursory review of local tax records. Property boundaries were not located as part of the AA

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

WESTEN Prepared by:


WESTON SOLUTIONS, INC.

2501 Jolly Road, Suite 100 Okemos, Michigan

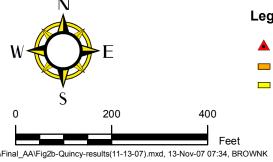

AOI Nos. 7 and 15 SITE FEATURES AND XRF LOCATIONS TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 2a

File: \FSOMI01\GIS\GIS Projects\Lake Linden\mxds\Final AA\Fig2a-Quincy(11-13-07).mxd, 13-Nov-07 07:31, BROWNK

Legend

Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

Soil XRF Sample Exceeds Part 201 Residential Direct Contact Criteria (RDCC)

XRF results exceeding RDCC are shown in Orange

■ Laboratory results exceeding RDCC are shown in Yellow

- J -- Data qualified as estimated based on data validation
- * -- Analyte detected below quantitation limits

mg/kg -- milligrams per kilogram

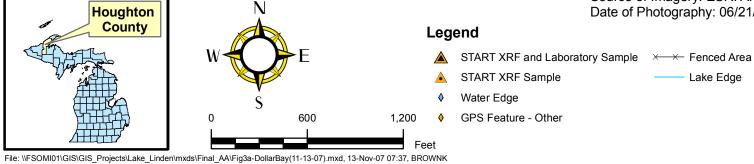
Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

WESTION Prepared by:

WESTON SOLUTIONS, INC.

2501 Jolly Road, Suite 100 Okemos, Michigan


Figure 2b

AOI Nos. 7 and 15 RDCC EXCEEDANCES IN SOIL TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

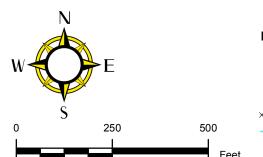
File: \FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig2b-Quincy-results(11-13-07).mxd, 13-Nov-07 07:34, BROWNK

Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

Lake Edge

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

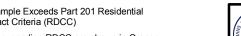
TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT


WESTEN Prepared by: WESTON SOLUTIONS, INC. 2501 Jolly Road, Suite 100 Okemos, Michigan

AOI Nos. 16 and 17 SITE FEATURES AND XRF LOCATIONS TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 3a

Date of Photography: 06/21/2005 Legend


Soil XRF Sample Exceeds Part 201 Residential Direct Contact Criteria (RDCC)

XRF results exceeding RDCC are shown in Orange

Laboratory results exceeding RDCC are shown in Yellow

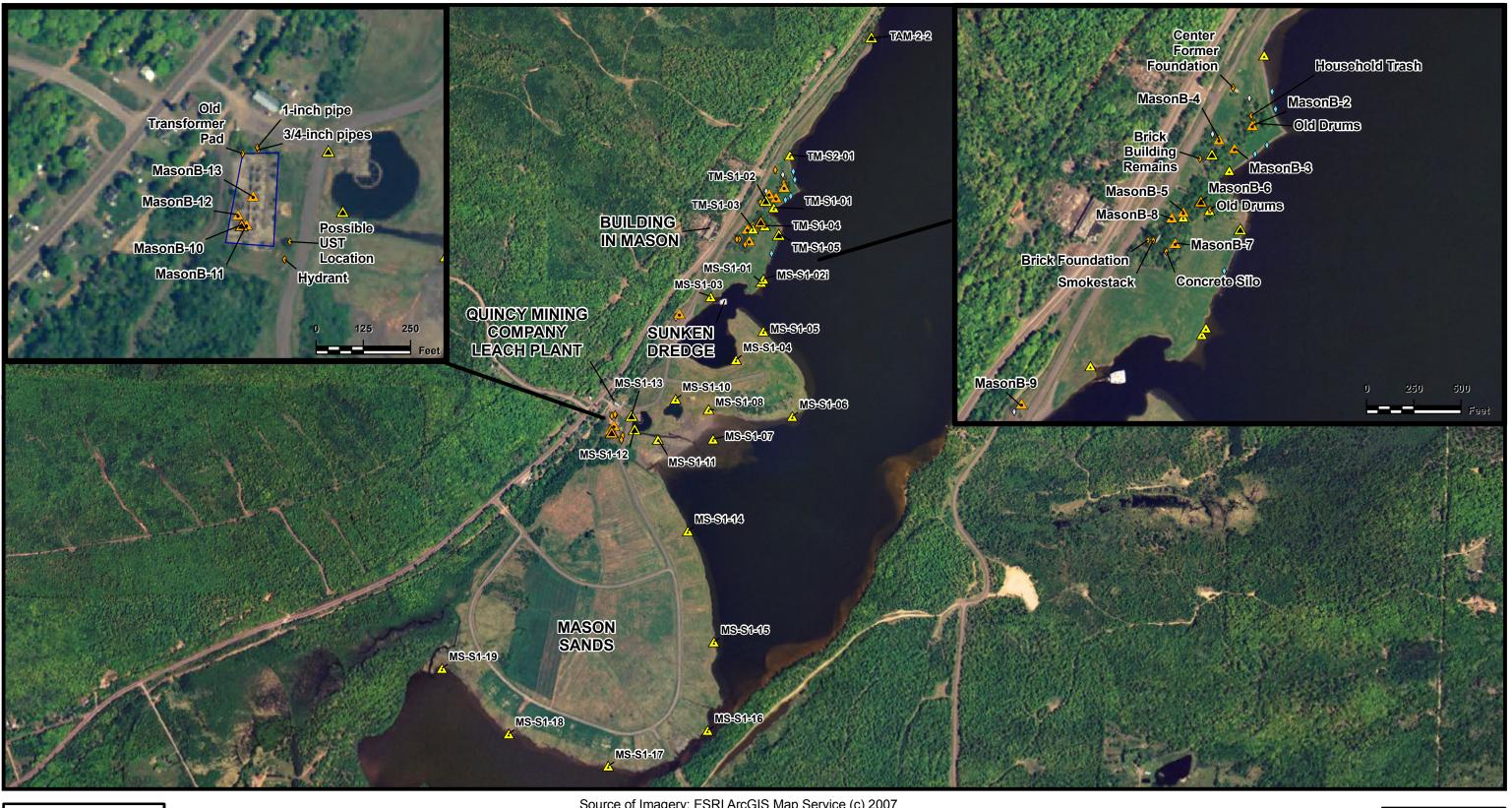
← × Fenced Area Lake Edge

mg/kg -- milligrams per kilogram

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

Prepared for:

U.S. EPA REGION V


Contract No: EP-S5-06-04

Prepared by: WESTON SOLUTIONS, INC. 2501 Jolly Road, Suite 100 Okemos, Michigan

AOI Nos. 16 and 17 RDCC EXCEEDANCES IN SOIL TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 3b

Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

> Debris/Slag Pile Water Edge

GPS Feature - Other

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

WESTEN Prepared by:

WESTON SOLUTIONS, INC. 2501 Jolly Road, Suite 100

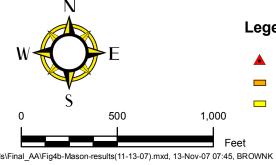

AOI Nos. 10 and 18 SITE FEATURES AND XRF LOCATIONS TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007 Okemos, Michigan

Figure 4a

File: \FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig4a-Mason(11-13-07).mxd, 13-Nov-07 07:44, BROWNK

Legend

Soil Sample Exceeds Part 201 Residential Direct Contact Criteria (RDCC)

XRF results exceeding RDCC are shown in Orange

Laboratory results exceeding RDCC are shown in Yellow mg/kg -- milligrams per kilogram

Date of Photography: 06/21/2005

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN:274-2A-ABDT

WESTON SOLUTIONS, INC. 2501 Jolly Road, Suite 100 Okemos, Michigan

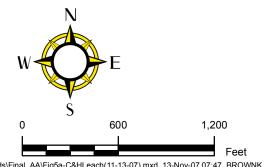
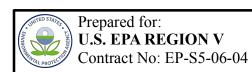

AOI Nos. 10 and 18 RDCC EXCEEDANCES IN SOIL TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 4b

File: \FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig4b-Mason-results(11-13-07).mxd, 13-Nov-07 07:45, BROWNK


Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

Legend

▲ FIELDS Team XRF and Laboratory Sample

FIELDS Team XRF Sample

MDEQ Identified Drums/Debris

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

Prepared by:

Prepared by:
WESTON SOLUTIONS, INC.
2501 Jolly Road, Suite 100
Okemos, Michigan

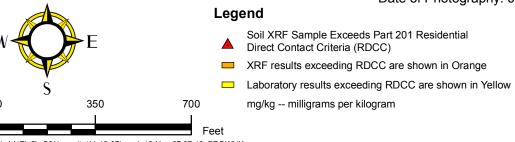

AOI No. 19 SITE FEATURES AND XRF LOCATIONS TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

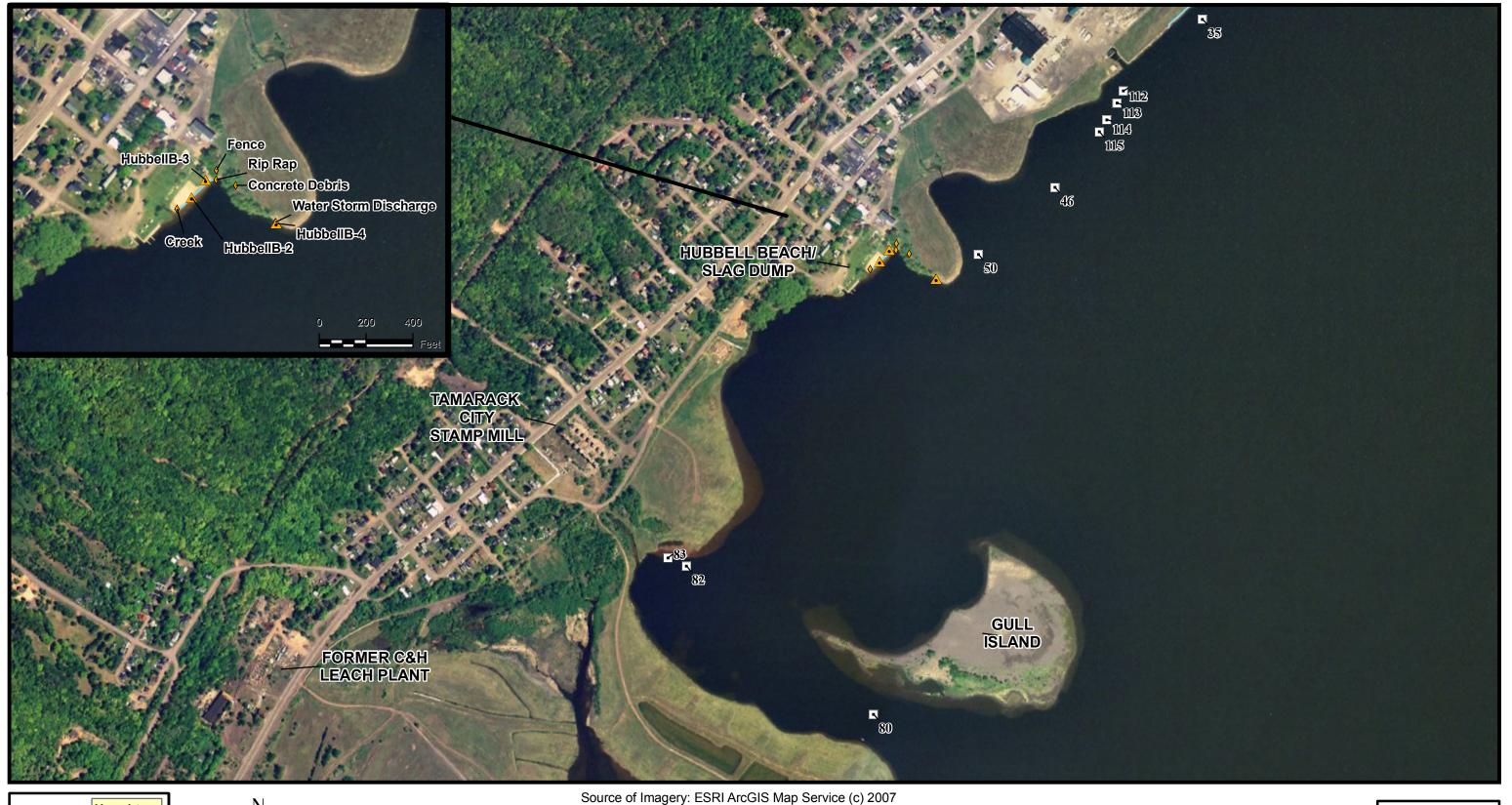
Figure 5a

File: \\FSOMI01\\GIS\\GIS_Projects\\Lake_Linden\\mxds\\Final_AA\\Fig5a-C&HLeach(11-13-07).mxd, 13-Nov-07 07:47, BROWNK

Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT


WESTEN

Prepared by: WESTON SOLUTIONS, INC. 2501 Jolly Road, Suite 100 Okemos, Michigan

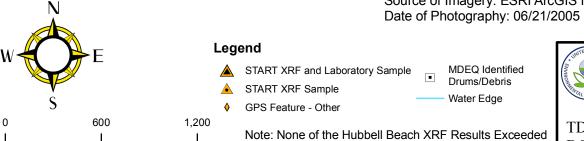

AOI No. 19 RDCC EXCEEDANCES IN SOIL TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 5b

File: \FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig5b-C&H-results(11-13-07).mxd, 13-Nov-07 07:49, BROWNK

Feet Part 201 Residential Direct Contact Criteria (RDCC)

Prepared for:
U.S. EPA REGION V
Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

Prepared by:

WESTON SOLUTIONS, INC.
2501 Jolly Road, Suite 100
Okemos, Michigan


AOI Nos. 20 and 21 SITE FEATURES AND XRF LOCATIONS TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 6

File: \FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig6-Tamarack&HubellBeach(11-13-07).mxd, 13-Nov-07 07:52, BROWNK

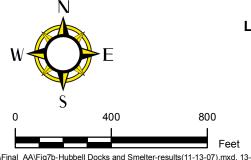
Date of Photography: 06/21/2005

MDEQ Identfied Drums/Debris Prepared for: U.S. EPA REGION V Water Edge Contract No: EP-S5-06-04 Debris Piles

> TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

WESTEN

Prepared by: WESTON SOLUTIONS, INC. 2501 Jolly Road, Suite 100 Okemos, Michigan


Figure 7a

AOI No. 22 SITE FEATURES AND XRF LOCATIONS TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

File: \FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig7a-Hubbell Docks and Smelter(11-13-07).mxd, 13-Nov-07 07:59, BROWNK

Legend

Date of Photography: 06/21/2005

Soil XRF Sample Exceeds Part 201 Residential Direct Contact Criteria (RDCC)

- XRF results exceeding RDCC are shown in Orange
- □ Laboratory results exceeding RDCC are shown in Yellow
 - J -- Data qualified as estimated based on data validation mg/kg -- milligrams per kilogram

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

WESTEN Prepared by:

WESTON SOLUTIONS, INC. 2501 Jolly Road, Suite 100

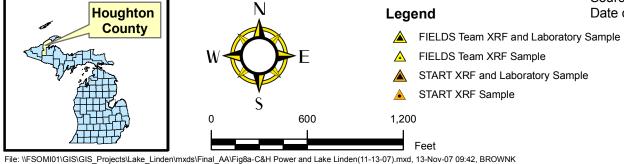

Okemos, Michigan

Figure 7b

AOI No. 22 RDCC EXCEEDANCES IN SOIL TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

File: \FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig7b-Hubbell Docks and Smelter-results(11-13-07).mxd, 13-Nov-07 08:00, BROWNK

Date of Photography: 06/21/2005

- Debris Pile/Drums
- Water Edge

Debris Area

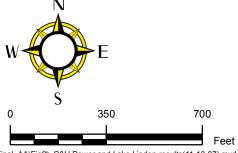
- GPS Feature Other
- MDEQ Identified Drums/Debris

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

WESTEN Prepared by:

WESTON SOLUTIONS, INC.


2501 Jolly Road, Suite 100 Okemos, Michigan

AOI Nos. 12 and 23 SITE FEATURES AND XRF LOCATIONS TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 8a

Legend

Soil XRF Sample Exceeds Part 201 Residential
Direct Contact Criteria (RDCC)

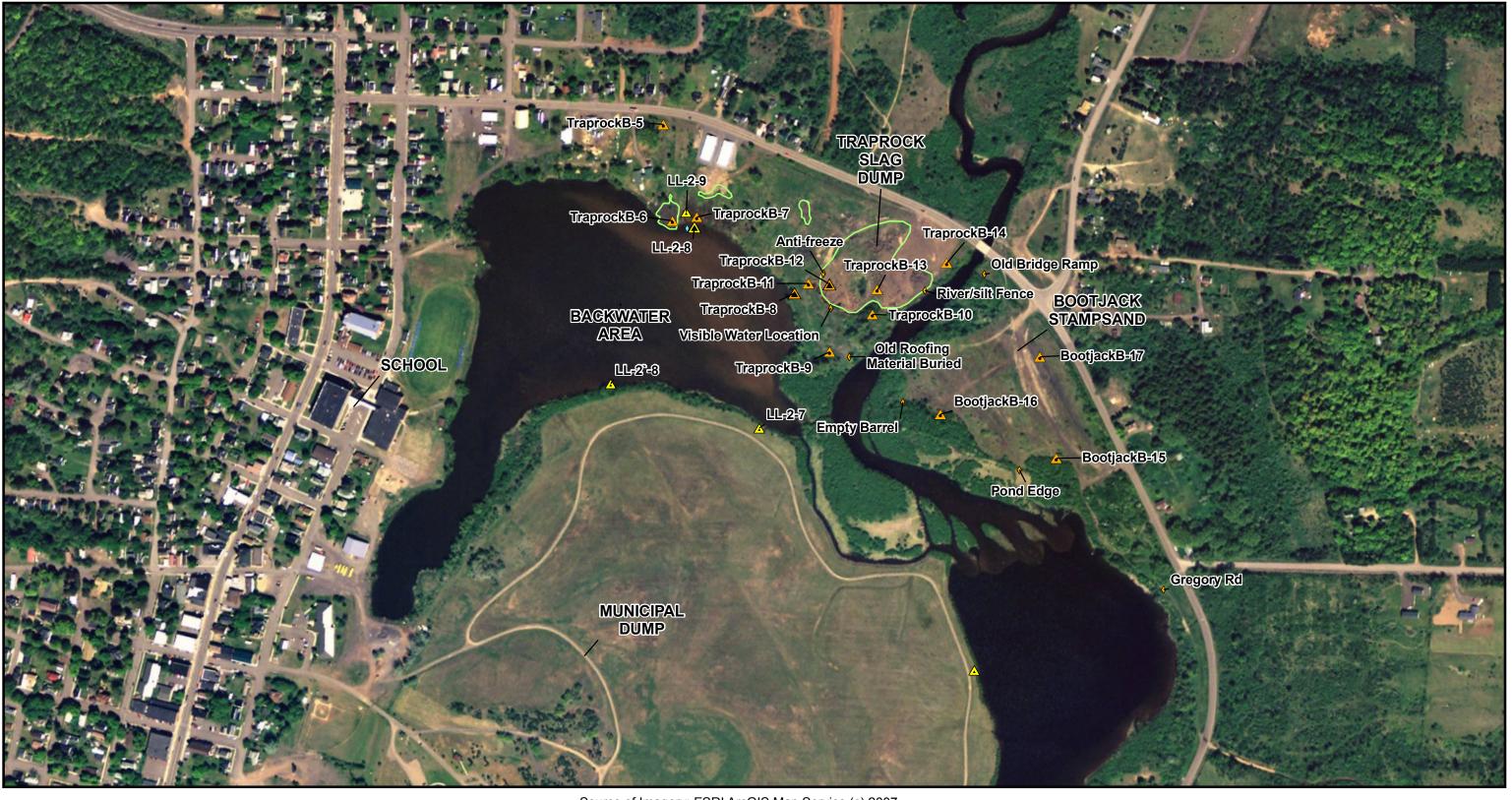
XRF results exceeding RDCC are shown in Orange

Laboratory results exceeding RDCC are shown in Yellow mg/kg -- milligrams per kilogram

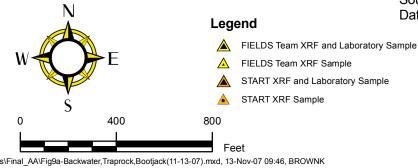
Date of Photography: 06/21/2005

ON THE STATES OF THE STATES OF

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04


TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

Prepared by:


Prepared by:
WESTON SOLUTIONS, INC.
2501 Jolly Road Suite 100

2501 Jolly Road, Suite 100 Okemos, Michigan Figure 8b

AOI Nos. 12 and 23 RDCC EXCEEDANCES IN SOIL TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

Prepared for: GPS Feature - Other U.S. EPA REGION V Slag/Rock/Debris Pile Contract No: EP-S5-06-04

> TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

WESTEN Prepared by:

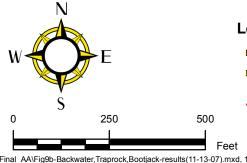

WESTON SOLUTIONS, INC. 2501 Jolly Road, Suite 100 Okemos, Michigan

Figure 9a AOI Nos. 24, 25 and 26

SITE FEATURES AND XRF LOCATIONS TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Legend

Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

XRF results exceeding RDCC are shown in Orange

Laboratory results exceeding RDCC are shown in Yellow

Soil XRF Sample Exceeds Part 201 Residential Direct Contact Criteria (RDCC)

mg/kg -- milligrams per kilogram

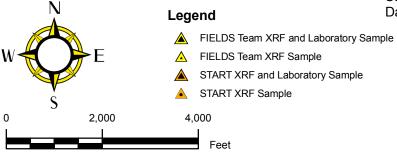
NATED STATES OF THE PROTECT OF THE P

Prepared for:
U.S. EPA REGION V
Contract No: EP-S5-06-04

Contract No. E1 -53-

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

Prepared by:
WESTON SOLUTIONS, INC.


2501 Jolly Road, Suite 100 Okemos, Michigan Figure 9b

AOI Nos. 24, 25 and 26 RDCC EXCEEDANCES IN SOIL TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

File: \FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig9b-Backwater,Traprock,Bootjack-results(11-13-07).mxd, 13-Nov-07 10:10, BROWNK

Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

- ♦ Building Ruins/Foundation
- Roofing Material Pile
- ♦ Water Edge
- GPS Feature Other
- GPS Area Feature

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT


Prepared by:

Prepared by:
WESTON SOLUTIONS, INC.
2501 Jolly Road, Suite 100
Okemos, Michigan

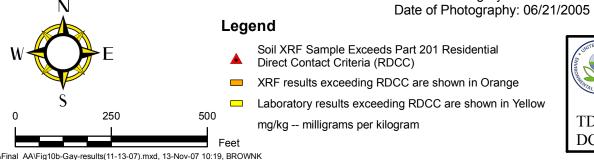

AOI No. 14 SITE FEATURES AND XRF LOCATIONS TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 10a

File: \FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig10a-Gay(11-13-07).mxd, 13-Nov-07 10:00, BROWNK

Property VI

Prepared for:
U.S. EPA REGION V
Contract No: EP-S5-06-04

Conduct No. El Se vo v

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

Prepared by:
WESTON SOLUTIONS, INC.
2501 Jolly Road, Suite 100
Okemos, Michigan

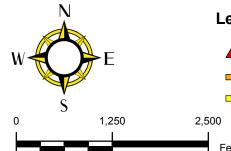

AOI No. 14 (ENTRANCE) RDCC EXCEEDANCES IN SOIL TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

Figure 10b

File: \\FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig10b-Gay-results(11-13-07).mxd, 13-Nov-07 10:19, BROWNK

Legend

Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

Soil XRF Sample Exceeds Part 201 Residential Direct Contact Criteria (RDCC)

XRF results exceeding RDCC are shown in Orange

Laboratory results exceeding RDCC are shown in Yellow mg/kg -- milligrams per kilogram

Prepared for: U.S. EPA REGION V Contract No: EP-S5-06-04

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

Prepared by:
WESTON SOLUTIONS, INC.

2501 Jolly Road, Suite 100 Okemos, Michigan

Figure 10c

AOI No. 14 (SHORELINE) RDCC EXCEEDANCES IN SOIL TORCH LAKE AREA ASSESSMENT KEWEENAW PENINSULA, MICHIGAN October 2007

File: \\FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\Fig10c-Gay-results2(11-13-07).mxd, 13-Nov-07 10:07, BROWNK

ATTACHMENT A SITE ACCESS SUMMARY TABLE

Attachment A - Site Access Summary Table Torch Lake Area Assessment Keweenaw Peninsula, Michigan September 20, 2007

Site/ Property Name	AOI Number	Landowner	Contact	Access Granted?	Access Denied?	START AA Completed	FIELDS Shoreline AA Completed
Quincy Smelter	7			NR	NR	NR	NR
Mason Sands	10	See Administrative Order	Same as landowner	Yes 1	No	Yes	Yes
Lake Linden Sands	12		Same as landowner				
C&H Stamp Mill	12	See Administrative Order	Same as landowner	Yes ¹	No	Yes	Yes
Lake Linden Leach Plant	12	See Administrative Order	Same as landowner	Yes ¹	No	Yes	Yes
Municipal Dump	12	See Administrative Order	Same as landowner	Yes ¹	No	Yes	Yes
Backwater Area of Torch Lake	24	See Administrative Order	Same as landowner	Yes 1	No	Yes	Yes
Gay Stampsands	14	Keweenaw County Road Commission	Gregg Patrick	Yes	No	Yes	NR
Additional Properties	15						
Adjacent to Smelter							
Franklin Township	15	Franklin Township	Same as landowner	Yes	No	Yes	NR
Spraugue	15	Diane B. Spraugue Trust	Same as landowner	No	No	No	No
Usimaki	15	Bruce Usimaki	Same as landowner	No	No	No	No
Manwell	15	Zenith Manwell	Same as landowner	No	No	No	No
Kolehmainen	15	Raymond Kolehmainen/ Bootjack Holdings/Ripley, LLC	Same as landowner	Yes 4	No	Yes	NR
Mickelsen	15	David and Marilyn Mickelsen	Same as landowner	Yes	No	Yes	NR
Hocking	15	Clarence G. Hocking Trust	Same as landowner	Yes	No	Yes	NR
H&Y Marina	15	H&Y, Inc.	Same as landowner	Yes	No	Yes	NR
Hanke	15	David and Pamela Hanke	Same as landowner	Yes	No	Yes	NR
Loukus	15	John Loukus	Same as landowner	No	No	No	No
Kotila	15	Jeffery & Iloni Kotila	Same as landowner	No	No	No	No
Copper Bowl Lanes	15	Copper Country, Inc.	Same as landowner	Yes ³	No	Yes	NR

NOTES:

AA – Area Assessment

AOI - Area of Investigation

FIELDS - U.S. EPA Field Environmental Decision Support team

NA – Not Applicable

NR - Not Required

U.S. EPA - United States Environmental Protection Agency

FOOTNOTES:

- 1 Access granted under Administrative Order on Consent (Docket No. V-W-'94-C)
- 2 Verbal approval only
- 3 Visual inspection only sampling not authorized
- 4 Owner would like to be present for the inspection
- 5 Property owner out of town during AA field work. May grant access if needed in the future.

Attachment A - Site Access Summary Table Torch Lake Area Assessment Keweenaw Peninsula, Michigan September 20, 2007

							FIELDS
CL (D)	AOI	v 1		Access	Access	START AA	Shoreline AA
Site/ Property Name	Number	Landowner	Contact	Granted?	Denied?	Completed	Completed
Dollar Bay ''Wire Mill''	16	Lawrence Julio	Same as landowner	No	Yes	No	No
Dollar Bay Well Field	17						
	17	Osceola Township	Steve Karpiak	Yes	No	Yes	NR
(Uncovered Area Near #17)	17	Paul and Lois Milanowski	Same as landowner	Yes	No	Yes	NR
Building in Mason	18	Lakeshore Estates	Dave Jukuri	Yes	No	Yes	NR
Tamarack City Stampmill	20	Osceola Township	Steve Karpiak	Yes	No	NR	NR
Hubbell Beach/Slag Dump	21	Torch Lake Township	Brian Cadwell	Yes	No	Yes	Yes
Hubbell Docks/ Smelter	22						
Area/Coal Storage Area							
Docks/Coal Storage Area	22	Ken Buchanan Forest Products	Ken Buchanan	NR	NR	NR	NR
Mineral Building	22	Silver Shores Enterprise, Inc.	Bill Siler	Yes	No	Yes	NR
C&H Power Plant	23	Louis Meneguzzo	Same as landowner	Yes ²	No	Yes	NR
Former C&H Leach Plant	19						
Tony Burcar	19	Tony Burcar	Same as landowner	No	Yes	No	No
Whiteman Parcel	19	Richard &Guinivere Whiteman	Same as landowner	No ⁵	No	No	No
Traprock Slag Dump	25	Shoreline Development Group, Inc. (AKA Shoreline Development Co.)	Barbara Wilder	Yes ⁴	No	Yes	NR
Bootjack Stampsand	26	Shoreline Development Group, Inc. (AKA Shoreline Development Co.)	Barbara Wilder	Yes ⁴	No	Yes	NR
Drums at Various	27	NA	NA	NR	NR	NR	NR
Locations (lake bottom)							

NOTES:

AA – Area Assessment

AOI – Area of Investigation

FIELDS - U.S. EPA Field Environmental Decision Support team

NA – Not Applicable

NR - Not Required

U.S. EPA - United States Environmental Protection Agency

FOOTNOTES:

- 1 Access granted under Administrative Order on Consent (Docket No. V-W-'94-C)
- 2 Verbal approval only
- 3 Visual inspection only sampling not authorized
- 4 Owner would like to be present for the inspection
- 5 Property owner out of town during AA field work. May grant access if needed in the future.

ATTACHMENT B PHOTO LOG

Photo Number: 1 Date: September 7, 2007
Direction: West Photographer: Nancy Posavatz

Subject: Shoreline at Clarence G. Hocking Trust property (AOI 15)

Site: Torch Lake Area Assessment

Direction: North **Photographer:** Nancy Posavatz

Subject: Bulged, leaking drum at Copper Bowl property (AOI 15)

Photo Number: 3 **Direction:** North

Subject: Drum at Building in Mason (AOI 18)

Date: September 6, 2007 **Photographer:** Nancy Posavatz

Site: Torch Lake Area Assessment

Photo Number: 4 **Direction:** East

Subject: Building 2 at Building in Mason (AOI 18)

Date: September 6, 2007 **Photographer:** Nancy Posavatz

Photo Number: 5 **Date:** September 6, 2007

Direction: North **Subject:** Building at Building in Mason (AOI 18) **Photographer:** Nancy Posavatz

Site: Torch Lake Area Assessment

Photo Number: 6 **Date:** September 6, 2007

Direction: West **Photographer:** Nancy Posavatz

Subject: Potential asbestos-containing material in the Building in Mason (AOI 18)

Photo Number: 7

Date: September 6, 2007

Photographer: Nancy Posavatz

Subject: Stained stamp sand and slag at Quincy Leach Plant (AOI 10)

Site: Torch Lake Area Assessment

Photo Number: 8 **Date:** September 6, 2007

Direction: East **Photographer:** Nancy Posavatz **Subject:** Possible location of underground storage tank at the Quincy Leach Plant (AOI 10)

Photo Number: 9
Direction: East

Subject: Beached, dilapidated dredge (AOI 10)

Site: Torch Lake Area Assessment

Photo Number: 10 **Direction:** Northeast

Subject: Mineral Building (AOI 22)

Date: September 7, 2007

Date: September 6, 2007

Photographer: Nancy Posavatz

Photographer: Nancy Posavatz

Photo Number: 11 Date: September 7, 2007
Direction: Northeast Photographer: Nancy Posavatz

Subject: Screening location MineralB-6 at Mineral Building (AOI 22)

Site: Torch Lake Area Assessment

Photo Number: 12 Date: September 7, 2007
Direction: Southwest Photographer: Nancy Posavatz

Subject: Debris pile near the Mineral Building (AOI 22)

Photo Number: 13

Date: September 7, 2007

Direction: Southwest

Photographer: Nancy Posavatz

Subject: Debris pile near the Mineral Building (AOI 22)

7

Site: Torch Lake Area Assessment

Photo Number: 14 **Direction:** Northeast

Subject: Drum at the Bootjack Stamp Sands (AOI 26)

Date: September 11, 2007 **Photographer:** Nancy Posavatz

Date: September 11, 2007 **Photo Number: 15 Photographer:** Nancy Posavatz **Direction:** Northeast

Subject: Sawmill Pond area at the Bootjack Stamp Sands (AOI 26)

Site: Torch Lake Area Assessment

Photo Number: 16 Direction: West

Subject: Former Hubbell Dump (AOI 21)

Date: September 11, 2007

Photographer: Nancy Posavatz

Photo Number: 17
Direction: East
Date: September 10, 2007
Photographer: Nancy Posavatz

Subject: Gray, discolored soils at Former Houghton County Gas & Coke (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 18
Date: September 10, 2007
Direction: South
Photographer: Nancy Posavatz
Subject: Suspected former process pipe at Former Houghton County Gas & Coke (AOI 15)

Photo Number: 19
Date: September 10, 2007

Direction: West
Photographer: Nancy Posavatz

Subject: Interior of sandstone building at Former Houghton County Gas & Coke (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 20
Direction: East
Date: September 10, 2007
Photographer: Nancy Posavatz

Subject: Brown tar-like material at Former Houghton County Gas & Coke (AOI 15)

Photo Number: 21
Date: September 10, 2007
Direction: North
Photographer: Nancy Posavatz

Subject: Underground vault area at Former Houghton County Gas & Coke (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 22

Date: September 10, 2007

Photographer: Nancy Posavatz

Subject: Black, stained soils at Gay Stamp Sands (AOI 14)

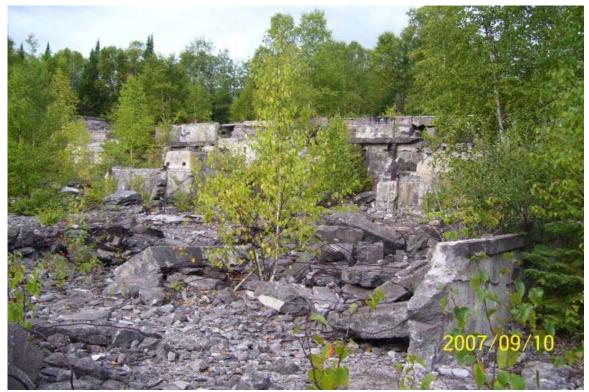


Photo Number: 23

Date: September 10, 2007

Direction: West

Photographer: Nancy Posavatz

Subject: Building ruins at Gay Stamp Sands (AOI 14)

Site: Torch Lake Area Assessment

Photo Number: 24
Date: September 10, 2007
Direction: West
Photographer: Nancy Posavatz

Subject: Former conveyor belt at Gay Stamp Sands (AOI 14)

Photo Number: 25
Direction: North
Date: September 10, 2007
Photographer: Nancy Posavatz

Subject: Green-stained soils at Gay Stamp Sands (AOI 14)

Site: Torch Lake Area Assessment

Photo Number: 26 **Direction:** East

Subject: Smokestack at Gay Stamp Sands (AOI 14)

Date: September 10, 2007

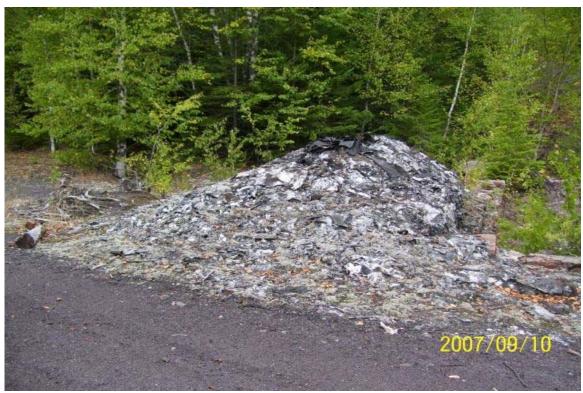

Photographer: Nancy Posavatz

Photo Number: 27 **Direction:** Southeast

Subject: Gay Stamp Sands (AOI 14)

Date: September 10, 2007 **Photographer:** Nancy Posavatz

Site: Torch Lake Area Assessment

Photo Number: 28
Date: September 10, 2007
Direction: West
Photographer: Nancy Posavatz

Subject: Pile of asbestos-containing roofing material at Gay Stamp Sands (AOI 14)

Photo Number: 29 **Direction:** North

Subject: Hubbell Beach (AOI 21)

Date: September 10, 2007 **Photographer:** Nancy Posavatz

Site: Torch Lake Area Assessment

Photo Number: 30 **Date:** September 5, 2007

Direction: West **Photographer:** Nancy Posavatz

Subject: Power plant building at C&H Power Plant Site (AOI 23)

Photo Number: 31

Date: September 5, 2007

Direction: North

Photographer: Nancy Po

Direction: North **Subject:** Property at the C&H Power Plant (AOI 23)

Photographer: Nancy Posavatz

Site: Torch Lake Area Assessment

Direction: West and down (basement level) **Photographer:** Nancy Posavatz

Subject: Partially submerged and leaking drums at C&H Power Plant (AOI 23)

Photo Number: 33

Date: September 5, 2007

Direction: Southwest

Photographer: Nancy Posavatz

Subject: Shoreline at C&H Power Plant (AOI 23)

Site: Torch Lake Area Assessment

Photo Number: 34 **Direction:** East

Subject: Storm drain at C&H Power Plant (AOI 23)

Date: September 5, 2007

Photographer: Nancy Posavatz

Photo Number: 35

Date: September 7, 2007

Direction: North

Photographer: Nancy Posavatz

Subject: Capped area at Dollar Bay (AOI 17)

Site: Torch Lake Area Assessment

Direction: East **Photographer:** Nancy Posavatz

Subject: Shoreline at Dollar Bay, uncapped area (AOI 17)

Photo Number: 37 **Date:** September 7, 2007

Direction: East **Photographer:** Nancy Posavatz **Subject:** Dollar Bay Well Field (AOI 17)

Site: Torch Lake Area Assessment

Direction: North **Photographer:** Nancy Posavatz **Subject:** Former building footprint at the Calumet Stamp Mill, Lake Linden Sands (AOI 12)

Photo Number: 39 **Direction:** Southeast

Subject: Copper Bowl (AOI 15)

Date: September 12, 2007 **Photographer:** Nancy Posavatz

Site: Torch Lake Area Assessment

Photo Number: 40 **Direction:** Southeast

Subject: Dollar Bay Well Field (AOI 17)

Date: September 12, 2007 **Photographer:** Nancy Posavatz

Photo Number: 41 **Direction:** Southwest

Subject: H&Y Marina (AOI 15)

Date: September 12, 2007 **Photographer:** Nancy Posavatz

Site: Torch Lake Area Assessment

Photo Number: 42 **Direction:** North

Subject: Hanke property (AOI 15)

Date: September 12, 2007 **Photographer:** Nancy Posavatz

Photo Number: 43 **Direction:** West

Subject: Julio Contracting (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 44

Date: September 12, 2007

Direction: North

Photographer: Nancy Posavatz

Subject: Bulging and leaking drums at Julio Contracting (AOI 15)

Date: September 12, 2007

Photographer: Nancy Posavatz

Photo Number: 45

Date: September 12, 2007

Direction: North

Photographer: Nancy Posavatz

Subject: Bulging above-ground storage tank (AST) at Julio Contracting (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 46 **Direction:** South

Subject: Julio Marine and Salvage (AOI 15.)

Photo Number: 47
Direction: Southwest
Date: September 12, 2007
Photographer: Nancy Posavatz

Subject: Pile of automobile gasoline tanks at the Julio Marine and Salvage (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 48
Date: September 12, 2007
Direction: Southwest
Photographer: Nancy Posavatz

Subject: Pile of electrical equipment at the Julio Marine and Salvage (AOI 15)

Photo Number: 49
Date: September 12, 2007
Direction: West
Photographer: Nancy Posavatz

Subject: Shoreline at the Julio Marine and Salvage (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 50
Direction: North
Date: September 12, 2007
Photographer: Nancy Posavatz

Subject: Stack of drums at the Julio Marine and Salvage (AOI 15)

Photo Number: 51

Date: September 12, 2007

Direction: South and down (ground surface)

Photographer: Nancy Posavatz

Subject: Tar seepage near Portage Lake at the Former Houghton County Gas & Coke (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 52 **Direction:** West

Subject: Shoreline at Julio Property (AOI 15)

Date: September 12, 2007 **Photographer:** Nancy Posavatz

Photo Number: 53

Date: September 12, 2007

Direction: West

Photographer: Nancy Posavatz

Subject: Large AST, possibly leaking, at Julio Property (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 54
Date: September 12, 2007
Direction: South
Photographer: Nancy Posavatz

Subject: Large excavator leaking hydraulic fluid at Julio Property (AOI 15)

Photo Number: 55

Date: September 12, 2007

Photographer: Nancy Posavatz

Subject: Sheen on surface of creek at Julio Contracting (AOI 15)

Site: Torch Lake Area Assessment

Photo Number: 56 **Direction:** East

Subject: Shoreline at Mickelsen property (AOI 15)

Date: September 12, 2007 **Photographer:** Nancy Posavatz

ATTACHMENT C ANLYTICAL DATA AND VALIDATION REPORT

Order No.: 0709373

September 25, 2007

Dan Capone Weston Solutions of Illinois, Inc. 750 E. Bunker Court Suite 500 Vernon Hills, IL 60061

TEL: (847) 918-4112 FAX (847) 918-4055

RE: Torch Lake SA - 20405.016.002.0274.00

Dear Dan Capone:

RTI Laboratories received 11 sample(s) on 9/14/2007 for the analyses presented in the following report.

There were no problems with the analytical events associated with this report unless noted in the Case Narrative. Analytical results designated with a "J" qualifier are estimated and represent a detection above the Method Detection Limit (MDL) and less than the Reporting Limit (PQL). These analytes are not reviewed nor narrated as to whether they are laboratory artifacts.

Quality control data is within laboratory defined or method specified acceptance limits except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Robert Lynch

Manager, Environmental Services

Case Narrative

WO#: **0709373**Date: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

This report in its entirety consists of the documents listed below. All documents contain the RTI Work Order Number assigned to this report.

- 1. Paginated Report including: Case Narrative, Analytical Results and Applicable Quality Control Summary Reports.
 - 2. A Cover Letter that immediately precedes the Paginated Report.
 - 3. Paginated copies of the Chain of Custody Documents supplied with this sample set.

Concentrations reported with a J flag in the Qual field are values below the reporting limit (RL) but greater than the established method detection limit (MDL). There is greater uncertainty associated with these results and data should be considered as estimated.

Concentrations reported with an E flag in the Qual field are values that exceed the upper quantification range. There is greater uncertainty associated with these results and data should be considered as estimated.

Any comments or problems with the analytical events associated with this report are noted below.

Collection Date: 9/10/2007

Analytical Report

(consolidated)

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Torch Lake SA - 20405.016.002.0274.00

0709373-001 Matrix: SOIL Lab ID:

Client Sample ID Gay B - XRF6

Project:

Analyses	Result	RL Q	Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	74		μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1221	ND	74		μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1232	ND	74		μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1242	ND	74		μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1248	ND	74		μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1254	ND	74		μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1260	ND	74		μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1262	ND	74		μg/Kg-dry	1	9/18/2007 6:44:07 AM
Total PCBs	ND	74		μg/Kg-dry	1	9/18/2007 6:44:07 AM
Surr: Decachlorobiphenyl	127	70-130		%REC	1	9/18/2007 6:44:07 AM
Surr: Tetrachloro-m-xylene	110	70-130		%REC	1	9/18/2007 6:44:07 AM
METALS, ICP/MS				SW602)A	Analyst: AB2
Aluminum	8,200,000	94,000		μg/Kg-dry	1000	9/24/2007 12:00:27 PM
Arsenic	350,000	940		μg/Kg-dry	100	9/21/2007 2:06:22 PM
Beryllium	520	4,700	J	μg/Kg-dry	100	9/21/2007 2:06:22 PM
Chromium	16,000	9,400		μg/Kg-dry	100	9/21/2007 2:06:22 PM
Cobalt	13,000	4,700		μg/Kg-dry	100	9/21/2007 2:06:22 PM
Copper	320,000,000	940,000		μg/Kg-dry	10000	9/24/2007 2:07:57 PM
Lead	290,000	9,400		μg/Kg-dry	100	9/21/2007 2:06:22 PM
Lithium	3,000	940		μg/Kg-dry	10	9/24/2007 5:33:25 PM
Manganese	270,000	9,400		μg/Kg-dry	100	9/21/2007 2:06:22 PM
Nickel	33,000	9,400		μg/Kg-dry	100	9/21/2007 2:06:22 PM
Silver	220,000	95		μg/Kg-dry	10	9/19/2007 6:57:23 PM
Strontium	ND	230,000		μg/Kg-dry	100	9/21/2007 2:06:22 PM
Zinc	180,000	9,400		μg/Kg-dry	100	9/21/2007 2:06:22 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	1,300	43		μg/Kg-dry	2	9/18/2007 4:18:22 PM
PERCENT MOISTURE				D2216	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 2 of 70

Collection Date: 9/10/2007

(consolidated)

WO#: 0709373 Date Reported: 9/25/2007

Analytical Report

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

0709373-001 Matrix: SOIL Lab ID:

Client Sample ID Gay B - XRF6

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2	2216	Analyst: JE
Percent Moisture	11	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 3 of 70

Analytical Report

(consolidated)

WO#: **0709373**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/10/2007

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-002 **Matrix:** SOIL

Client Sample ID Gay B - XRF11

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	76		μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1221	ND	76		μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1232	ND	76		μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1242	ND	76		μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1248	ND	76		μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1254	ND	76		μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1260	ND	76		μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1262	ND	76		μg/Kg-dry	1	9/18/2007 7:25:00 AM
Total PCBs	ND	76		μg/Kg-dry	1	9/18/2007 7:25:00 AM
Surr: Decachlorobiphenyl	122	70-130		%REC	1	9/18/2007 7:25:00 AM
Surr: Tetrachloro-m-xylene	107	70-130		%REC	1	9/18/2007 7:25:00 AM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	7,200,000	96,000		μg/Kg-dry	1000	9/24/2007 12:02:20 PM
Arsenic	670,000	960		μg/Kg-dry	100	9/21/2007 2:13:35 PM
Beryllium	800	4,800	J	μg/Kg-dry	100	9/21/2007 2:13:35 PM
Chromium	45,000	9,600		μg/Kg-dry	100	9/21/2007 2:13:35 PM
Cobalt	14,000	4,800		μg/Kg-dry	100	9/21/2007 2:13:35 PM
Copper	430,000,000	960,000		μg/Kg-dry	10000	9/24/2007 3:10:42 PM
Lead	82,000	9,600		μg/Kg-dry	100	9/21/2007 2:13:35 PM
Lithium	2,900	960		μg/Kg-dry	10	9/24/2007 5:38:42 PM
Manganese	200,000	9,600		μg/Kg-dry	100	9/21/2007 2:13:35 PM
Nickel	39,000	9,600		μg/Kg-dry	100	9/21/2007 2:13:35 PM
Silver	150,000	100		μg/Kg-dry	10	9/19/2007 7:02:23 PM
Strontium	ND	240,000		μg/Kg-dry	100	9/21/2007 2:13:35 PM
Zinc	97,000	9,600		μg/Kg-dry	100	9/21/2007 2:13:35 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	630	16		μg/Kg-dry	1	9/18/2007 3:02:19 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 4 of 70

Analytical Report (consolidated)

WO#:

Collection Date: 9/10/2007

0709373

Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-002 **Matrix:** SOIL

Client Sample ID Gay B - XRF11

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	13	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Collection Date: 9/10/2007

Matrix: SOIL

Analytical Report (consolidated)

0709373

WO#: Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Torch Lake SA - 20405.016.002.0274.00

0709373-003 Lab ID:

Client Sample ID Gay B - XRF14

Project:

Analyses	Result	RL Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW80	82	Analyst: MB
Aroclor 1016	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1221	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1232	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1242	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1248	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1254	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1260	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1262	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Total PCBs	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Surr: Decachlorobiphenyl	118	70-130	%REC	1	9/18/2007 8:05:34 AM
Surr: Tetrachloro-m-xylene	104	70-130	%REC	1	9/18/2007 8:05:34 AM
METALS, ICP/MS			SW602	0A	Analyst: AB2
Aluminum	11,000,000	81,000	μg/Kg-dry	1000	9/24/2007 12:04:12 PM
Arsenic	58,000	810	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Beryllium	ND	4,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Chromium	61,000	8,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Cobalt	12,000	4,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Copper	990,000	8,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Lead	850,000	8,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Lithium	5,000	810	μg/Kg-dry	10	9/24/2007 5:40:27 PM
Manganese	610,000	8,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Nickel	31,000	8,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Silver	940	100	μg/Kg-dry	10	9/19/2007 7:20:08 PM
Strontium	ND	200,000	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Zinc	14,000,000	81,000	μg/Kg-dry	1000	9/24/2007 4:10:00 PM
MERCURY			SW747	1A	Analyst: AB2
Mercury	26	21	μg/Kg-dry	1	9/18/2007 3:04:25 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 6 of 70

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Collection Date: 9/10/2007

Analytical Report

(consolidated)

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

0709373-003 Matrix: SOIL Lab ID:

Client Sample ID Gay B - XRF14

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	12	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Collection Date: 9/10/2007

Analytical Report

(consolidated)

WO#: **0709373**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-004 **Matrix:** SOIL

Client Sample ID Gay B - XRF21

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1221	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1232	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1242	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1248	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1254	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1260	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1262	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Total PCBs	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Surr: Decachlorobiphenyl	131	70-130	S	%REC	1	9/18/2007 8:46:00 AM
Surr: Tetrachloro-m-xylene	106	70-130		%REC	1	9/18/2007 8:46:00 AM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	7,600,000	97,000		μg/Kg-dry	1000	9/24/2007 12:06:04 PM
Arsenic	12,000	970		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Beryllium	ND	4,800		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Chromium	35,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Cobalt	7,500	4,800		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Copper	650,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Lead	61,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Lithium	6,600	970		μg/Kg-dry	10	9/24/2007 5:42:14 PM
Manganese	250,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Nickel	13,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Silver	1,100	98		μg/Kg-dry	10	9/19/2007 7:21:59 PM
Strontium	ND	240,000		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Zinc	100,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	200	26		μg/Kg-dry	1	9/18/2007 3:06:04 PM
PERCENT MOISTURE				D2210	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 8 of 70

Collection Date: 9/10/2007

(consolidated)

Analytical Report

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Torch Lake SA - 20405.016.002.0274.00 **Project:**

0709373-004 Matrix: SOIL Lab ID:

Client Sample ID Gay B - XRF21

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2:	216	Analyst: JE
Percent Moisture	18	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Value above quantitation range Е
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Analytical Report

(consolidated)

WO#: **0709373**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/10/2007

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-005 **Matrix:** SOIL

Client Sample ID Gay B - XRF26

Analyses	Result	RL Qı	ual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	2	Analyst: MB
Aroclor 1016	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1221	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1232	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1242	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1248	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1254	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1260	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1262	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Total PCBs	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Surr: Decachlorobiphenyl	140	70-130	S	%REC	1	9/18/2007 2:11:05 PM
Surr: Tetrachloro-m-xylene	102	70-130		%REC	1	9/18/2007 2:11:05 PM
METALS, ICP/MS				SW6020)A	Analyst: AB2
Aluminum	6,700,000	110,000		μg/Kg-dry	1000	9/24/2007 12:07:57 PM
Arsenic	17,000	1,100		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Beryllium	ND	5,600		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Chromium	59,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Cobalt	17,000	5,600		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Copper	1,100,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Lead	310,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Lithium	3,900	1,100		μg/Kg-dry	10	9/24/2007 5:44:00 PM
Manganese	930,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Nickel	45,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Silver	1,200	130		μg/Kg-dry	10	9/19/2007 7:23:51 PM
Strontium	ND	280,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Zinc	4,300,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	460	31		μg/Kg-dry	1	9/18/2007 3:11:07 PM
PERCENT MOISTURE				D2216	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 10 of 70

Analytical Report (consolidated)

WO#:

Collection Date: 9/10/2007

0709373

Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-005 **Matrix:** SOIL

Client Sample ID Gay B - XRF26

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	32	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Collection Date: 9/10/2007

Analytical Report

(consolidated)

WO#: **0709373**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-006 **Matrix:** SOLID

Client Sample ID MGP-TAR

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW8	082	Analyst: MB
Aroclor 1016	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1221	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1232	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1242	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1248	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1254	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1260	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1262	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Total PCBs	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Surr: Decachlorobiphenyl	85.1	70-130		%REC	1	9/18/2007 12:08:49 PM
Surr: Tetrachloro-m-xylene	98.7	70-130		%REC	1	9/18/2007 12:08:49 PM
METALS, ICP/MS				SW60	20A	Analyst: AB2
Aluminum	720,000	90,000		μg/Kg	1000	9/24/2007 12:55:14 PM
Arsenic	1,000	900		μg/Kg	100	9/21/2007 2:23:17 PM
Beryllium	ND	4,500		μg/Kg	100	9/21/2007 2:23:17 PM
Chromium	ND	9,000		μg/Kg	100	9/21/2007 2:23:17 PM
Cobalt	500	4,500	J	μg/Kg	100	9/21/2007 2:23:17 PM
Copper	350,000	9,000		μg/Kg	100	9/21/2007 2:23:17 PM
Lead	4,200	9,000	J	μg/Kg	100	9/21/2007 2:23:17 PM
Lithium	ND	900		μg/Kg	10	9/24/2007 5:45:47 PM
Manganese	16,000	9,000		μg/Kg	100	9/21/2007 2:23:17 PM
Nickel	1,500	9,000	J	μg/Kg	100	9/21/2007 2:23:17 PM
Silver	670	85		μg/Kg	10	9/19/2007 7:25:40 PM
Strontium	ND	230,000		μg/Kg	100	9/21/2007 2:23:17 PM
Zinc	7,900	9,000	J	μg/Kg	100	9/21/2007 2:23:17 PM
MERCURY				SW74	71A	Analyst: AB2
Mercury	30	25		μg/Kg	1	9/18/2007 3:12:47 PM
POLYNUCLEAR AROMATIC HYDROC SEMI-VOLATILE ORGANIC COMPOUN				SW82	70C	Analyst: JW

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 12 of 70

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Analytical Report

(consolidated)

WO#: **0709373**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/10/2007

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-006 **Matrix:** SOLID

Client Sample ID MGP-TAR

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
POLYNUCLEAR AROMATIC HYDI SEMI-VOLATILE ORGANIC COMP				SW82	270C	Analyst: JW
2-Methylnaphthalene	3,600,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Acenaphthene	400,000	960,000	J	μg/Kg	200	9/20/2007 3:13:00 PM
Acenaphthylene	4,900,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Anthracene	3,200,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(a)anthracene	2,500,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(a)pyrene	2,400,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(b)fluoranthene	2,400,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(g,h,i)perylene	1,400,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(k)fluoranthene	1,100,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Chrysene	1,800,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Dibenz(a,h)anthracene	270,000	960,000	J	μg/Kg	200	9/20/2007 3:13:00 PM
Fluoranthene	7,400,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Fluorene	3,000,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Indeno(1,2,3-cd)pyrene	1,200,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Naphthalene	21,000,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Phenanthrene	11,000,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Pyrene	7,900,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Surr: 2,4,6-Tribromophenol	0	25-93.9	S	%REC	200	9/20/2007 3:13:00 PM
Surr: 2-Fluorobiphenyl	44.0	26-105		%REC	200	9/20/2007 3:13:00 PM
Surr: 2-Fluorophenol	36.0	25-120		%REC	200	9/20/2007 3:13:00 PM
Surr: Nitrobenzene-d5	32.0	30.1-104		%REC	200	9/20/2007 3:13:00 PM
Surr: Phenol-d5	44.0	25-118		%REC	200	9/20/2007 3:13:00 PM
Surr: Terphenyl-d14	68.0	27.1-115		%REC	200	9/20/2007 3:13:00 PM
VOLATILE ORGANIC COMPOUND	os			SW82	260B	Analyst: MT3
1,1,1,2-Tetrachloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1,1-Trichloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1,2,2-Tetrachloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1,2-Trichloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1-Dichloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1-Dichloroethene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1-Dichloropropene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 13 of 70

Collection Date: 9/10/2007

Analytical Report (consolidated)

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

Matrix: SOLID Lab ID: 0709373-006

Client Sample ID MGP-TAR

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS				SW82	260B	Analyst: MT3
1,2,3-Trichlorobenzene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2,3-Trichloropropane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2,3-Trimethylbenzene	92,000	200,000	J	μg/Kg	200000	9/22/2007 3:15:00 PM
1,2,4-Trichlorobenzene	ND	1,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2,4-Trimethylbenzene	260,000	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2-Dibromo-3-chloropropane	ND	1,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2-Dichlorobenzene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2-Dichloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2-Dichloropropane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,3,5-Trimethylbenzene	100,000	200,000	J	μg/Kg	200000	9/22/2007 3:15:00 PM
1,3-Dichlorobenzene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,3-Dichloropropane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,4-Dichlorobenzene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
2,2-Dichloropropane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
2-Chloroethyl vinyl ether	ND	2,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
2-Chlorotoluene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
2-Hexanone	ND	10,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
2-Methylnaphthalene	3,200,000	1,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
2-Nitropropane	ND	800,000		μg/Kg	200000	9/22/2007 3:15:00 PM
4-Chlorotoluene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Acetone	630,000	10,000,000	J	μg/Kg	200000	9/22/2007 3:15:00 PM
Acrylonitrile	ND	1,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Benzene	1,200,000	120,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Bromobenzene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Bromochloromethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Bromodichloromethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Bromoform	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Bromomethane	ND	1,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Carbon disulfide	ND	1,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Carbon tetrachloride	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Chlorobenzene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Chloroethane	ND	1,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Chloroform	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Chloromethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Analytical Report

(consolidated)

WO#: **0709373**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/10/2007

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-006 **Matrix:** SOLID

Client Sample ID MGP-TAR

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS				SW82	260B	Analyst: MT3
cis-1,2-Dichloroethene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
cis-1,3-Dichloropropene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Dibromochloromethane	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Dibromomethane	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Dichlorodifluoromethane	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Dichloromethane	ND	1,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Diethyl ether	ND	1,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Ethyl methacrylate	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Ethylbenzene	80,000	200,000	J	μg/Kg	20000	0 9/22/2007 3:15:00 PM
Ethylene dibromide	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Hexachlorobutadiene	ND	1,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Hexachloroethane	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Isopropyl ether	ND	1,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Isopropylbenzene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
m,p-Xylene	520,000	400,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Methyl ethyl ketone	ND	1,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Methyl Iodide	ND	1,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Methyl isobutyl ketone	ND	2,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Methyl tert-butyl ether	ND	1,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Naphthalene	29,000,000	1,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
n-Butylbenzene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
n-Propylbenzene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
o-Xylene	210,000	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
p-Isopropyltoluene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
sec-Butylbenzene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Styrene	210,000	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
t-Butyl alcohol	ND	8,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
tert-Amyl Methyl Ether	ND	800,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
tert-Butyl Ethyl Ether	ND	1,000,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
tert-Butylbenzene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Tetrachloroethene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
Toluene	640,000	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
trans-1,2-Dichloroethene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM
trans-1,3-Dichloropropene	ND	200,000		μg/Kg	20000	0 9/22/2007 3:15:00 PM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 15 of 70

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Collection Date: 9/10/2007

Analytical Report

(consolidated)

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

0709373-006 Matrix: SOLID Lab ID:

Client Sample ID MGP-TAR

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS				SW826	0B	Analyst: MT3
trans-1,4-Dichloro-2-butene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Trichloroethene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Trichlorofluoromethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Vinyl chloride	ND	160,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Xylenes, Total	730,000	600,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Surr: 4-Bromofluorobenzene	114	90-115		%REC	200000	9/22/2007 3:15:00 PM
Surr: Dibromofluoromethane	117	88.4-108	S	%REC	200000	9/22/2007 3:15:00 PM
Surr: Toluene-d8	109	90-112		%REC	200000	9/22/2007 3:15:00 PM
CYANIDE				SW901	2A	Analyst: JT
Cyanide, Total	3.5	0.12		mg/Kg	1	9/21/2007

Qualifiers: */XValue exceeds Maximum Contaminant Level

> Е Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

Reporting Detection Limit RL

Page 16 of 70

Analytical Report

(consolidated)

WO#: **0709373**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/7/2007

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-007 **Matrix:** SOIL

Client Sample ID Calument XRF 16

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	82	Analyst: MB
Aroclor 1016	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1221	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1232	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1242	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1248	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1254	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1260	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1262	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Total PCBs	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Surr: Decachlorobiphenyl	499	70-130	S	%REC	1	9/18/2007 2:51:43 PM
Surr: Tetrachloro-m-xylene	102	70-130		%REC	1	9/18/2007 2:51:43 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	13,000,000	140,000		μg/Kg-dry	1000	9/24/2007 12:09:49 PM
Arsenic	36,000	1,400		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Beryllium	1,600	6,800	J	μg/Kg-dry	100	9/21/2007 2:30:34 PM
Chromium	28,000	14,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Cobalt	18,000	6,800		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Copper	10,000,000	140,000		μg/Kg-dry	1000	9/25/2007 4:11:17 PM
Lead	1,100,000	14,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Lithium	9,700	1,400		μg/Kg-dry	10	9/24/2007 5:54:00 PM
Manganese	740,000	14,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Nickel	49,000	14,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Silver	2,400	150		μg/Kg-dry	10	9/19/2007 7:27:28 PM
Strontium	ND	340,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Zinc	420,000	14,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	230	43		μg/Kg-dry	1	9/18/2007 3:14:27 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 17 of 70

Collection Date: 9/7/2007

Matrix: SOIL

(consolidated)

WO#: 0709373 Date Reported: 9/25/2007

Analytical Report

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake SA - 20405.016.002.0274.00

0709373-007 Lab ID:

Client Sample ID Calument XRF 16

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	42	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 18 of 70

Analytical Report

(consolidated)

WO#: **0709373**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/6/2007

Project: Torch Lake SA - 20405.016.002.0274.00

Lab ID: 0709373-008 **Matrix:** SOIL

Client Sample ID Mason XRF6

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	32	Analyst: MB
Aroclor 1016	ND	39	μg/Kg-dry	1	9/18/2007 12:49:42 PM
Aroclor 1221	ND	39	μg/Kg-dry	1	9/18/2007 12:49:42 PM
Aroclor 1232	ND	39	μg/Kg-dry	1	9/18/2007 12:49:42 PM
Aroclor 1242	ND	39	μg/Kg-dry	1	9/18/2007 12:49:42 PM
Aroclor 1248	ND	39	μg/Kg-dry	1	9/18/2007 12:49:42 PM
Aroclor 1254	ND	39	μg/Kg-dry	1	9/18/2007 12:49:42 PM
Aroclor 1260	ND	39	μg/Kg-dry	1	9/18/2007 12:49:42 PM
Aroclor 1262	ND	39	μg/Kg-dry	1	9/18/2007 12:49:42 PM
Total PCBs	ND	39	μg/Kg-dry	1	9/18/2007 12:49:42 PM
Surr: Decachlorobiphenyl	112	70-130	%REC	1	9/18/2007 12:49:42 PM
Surr: Tetrachloro-m-xylene	99.7	70-130	%REC	1	9/18/2007 12:49:42 PM
METALS, ICP/MS			SW6020	DA	Analyst: AB2
Aluminum	16,000,000	96,000	μg/Kg-dry	1000	9/24/2007 12:11:41 PM
Arsenic	6,700	960	μg/Kg-dry	100	9/21/2007 2:33:00 PM
Beryllium	750	4,800	J μg/Kg-dry	100	9/21/2007 2:33:00 PM
Chromium	8,200	9,600	J μg/Kg-dry	100	9/21/2007 2:33:00 PM
Cobalt	17,000	4,800	μg/Kg-dry	100	9/21/2007 2:33:00 PM
Copper	1,900,000	9,600	μg/Kg-dry	100	9/21/2007 2:33:00 PM
Lead	1,100,000	9,600	μg/Kg-dry	100	9/21/2007 2:33:00 PM
Lithium	7,100	960	μg/Kg-dry	10	9/24/2007 5:55:48 PM
Manganese	790,000	9,600	μg/Kg-dry	100	9/21/2007 2:33:00 PM
Nickel	31,000	9,600	μg/Kg-dry	100	9/21/2007 2:33:00 PM
Silver	5,300	100	μg/Kg-dry	10	9/19/2007 7:29:17 PM
Strontium	ND	240,000	μg/Kg-dry	100	9/21/2007 2:33:00 PM
Zinc	110,000	9,600	μg/Kg-dry	100	9/21/2007 2:33:00 PM
MERCURY			SW747	1A	Analyst: AB2
Mercury	510	28	μg/Kg-dry	1	9/18/2007 3:16:08 PM
PERCENT MOISTURE			D2216	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 19 of 70

(consolidated)

Analytical Report

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/6/2007

Project: Torch Lake SA - 20405.016.002.0274.00

0709373-008 Matrix: SOIL Lab ID:

Client Sample ID Mason XRF6

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2	216	Analyst: JE
Percent Moisture	14	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 20 of 70

Collection Date: 9/7/2007

Analytical Report (consolidated)

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Torch Lake SA - 20405.016.002.0274.00

0709373-009 Matrix: SOIL Lab ID:

Client Sample ID Mineral XRF11

Project:

Analyses	Result	RL Q)ual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1221	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1232	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1242	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1248	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1254	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1260	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1262	24	68	J	μg/Kg-dry	1	9/18/2007 9:26:29 AM
Total PCBs	24	68	J	μg/Kg-dry	1	9/18/2007 9:26:29 AM
Surr: Decachlorobiphenyl	94.9	70-130		%REC	1	9/18/2007 9:26:29 AM
Surr: Tetrachloro-m-xylene	84.3	70-130		%REC	1	9/18/2007 9:26:29 AM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	6,200,000	73,000		μg/Kg-dry	1000	9/24/2007 12:13:34 PM
Arsenic	52,000	730		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Beryllium	500	3,600	J	μg/Kg-dry	100	9/21/2007 2:35:26 PM
Chromium	6,900	7,300	J	μg/Kg-dry	100	9/21/2007 2:35:26 PM
Cobalt	6,900	3,600		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Copper	17,000,000	73,000		μg/Kg-dry	1000	9/24/2007 2:12:11 PM
Lead	280,000	7,300		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Lithium	4,700	730		μg/Kg-dry	10	9/24/2007 5:57:35 PM
Manganese	180,000	7,300		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Nickel	24,000	7,300		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Silver	5,000	90		μg/Kg-dry	10	9/19/2007 7:31:05 PM
Strontium	ND	180,000		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Zinc	490,000	7,300		μg/Kg-dry	100	9/21/2007 2:35:26 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	100	17		μg/Kg-dry	1	9/18/2007 3:17:47 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 21 of 70

(consolidated)

Analytical Report

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/7/2007

Project: Torch Lake SA - 20405.016.002.0274.00

0709373-009 Matrix: SOIL Lab ID:

Client Sample ID Mineral XRF11

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2:	216	Analyst: JE
Percent Moisture	2.3	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 22 of 70

Analytical Report

(consolidated)

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/6/2007

Torch Lake SA - 20405.016.002.0274.00 **Project:**

0709373-010 Matrix: SOIL Lab ID:

Client Sample ID Mason XRF10

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW80	82	Analyst: MB
Aroclor 1016	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1221	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1232	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1242	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1248	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1254	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1260	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1262	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Total PCBs	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Surr: Decachlorobiphenyl	130	70-130	%REC	1	9/18/2007 10:07:02 AM
Surr: Tetrachloro-m-xylene	104	70-130	%REC	1	9/18/2007 10:07:02 AM
METALS, ICP/MS			SW602	0A	Analyst: AB2
Aluminum	21,000,000	72,000	μg/Kg-dry	1000	9/24/2007 12:15:27 PM
Arsenic	1,700	720	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Beryllium	ND	3,600	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Chromium	10,000	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Cobalt	17,000	3,600	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Copper	19,000,000	72,000	μg/Kg-dry	1000	9/24/2007 2:14:06 PM
Lead	200,000	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Lithium	3,400	720	μg/Kg-dry	10	9/24/2007 5:59:21 PM
Manganese	520,000	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Nickel	32,000	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Silver	5,400	70	μg/Kg-dry	10	9/19/2007 7:32:54 PM
Strontium	ND	180,000	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Zinc	110,000	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
MERCURY			SW747	'1 A	Analyst: AB2
Mercury	120	23	μg/Kg-dry	1	9/18/2007 3:19:24 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 23 of 70

Collection Date: 9/6/2007

Analytical Report (consolidated)

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Torch Lake SA - 20405.016.002.0274.00 **Project:**

0709373-010 Matrix: SOIL Lab ID:

Client Sample ID Mason XRF10

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	4.5	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 24 of 70

Collection Date: 9/7/2007

Analytical Report

(consolidated)

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Torch Lake SA - 20405.016.002.0274.00 **Project:**

0709373-011 Matrix: SOIL Lab ID:

Client Sample ID Mineral XRF6

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	32	Analyst: MB
Aroclor 1016	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1221	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1232	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1242	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1248	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1254	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1260	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1262	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Total PCBs	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Surr: Decachlorobiphenyl	122	70-130	%REC	1	9/18/2007 1:30:34 PM
Surr: Tetrachloro-m-xylene	104	70-130	%REC	1	9/18/2007 1:30:34 PM
METALS, ICP/MS			SW602	0A	Analyst: AB2
Aluminum	3,200,000	64,000	μg/Kg-dry	1000	9/24/2007 12:57:08 PM
Arsenic	230,000	640	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Beryllium	ND	3,200	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Chromium	56,000	6,400	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Cobalt	48,000	3,200	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Copper	44,000,000	640,000	μg/Kg-dry	10000	9/24/2007 3:12:37 PM
Lead	1,900,000	6,400	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Lithium	ND	640	μg/Kg-dry	10	9/24/2007 6:01:06 PM
Manganese	73,000	6,400	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Nickel	540,000	6,400	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Silver	9,000	87	μg/Kg-dry	10	9/19/2007 7:34:43 PM
Strontium	ND	160,000	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Zinc	5,400,000	64,000	μg/Kg-dry	1000	9/24/2007 4:01:23 PM
MERCURY			SW747	1A	Analyst: AB2
Mercury	22	14	μg/Kg-dry	1	9/18/2007 3:32:39 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 25 of 70

Analytical Report (consolidated)

WO#: 0709373 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/7/2007

Torch Lake SA - 20405.016.002.0274.00 **Project:**

0709373-011 Matrix: SOIL Lab ID:

Client Sample ID Mineral XRF6

Analyses	Result	RL Qua	l Units	DF	Date Analyzed		
PERCENT MOISTURE			D22	16	Analyst: JE		
Percent Moisture	6.4	1.0	wt%	1	9/17/2007 8:30:00 AM		

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 26 of 70

RTI Laboratories

Date: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Work Order:

0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: PMOIST

Sample ID: 0709373-010ADUP	SampType: DUP	TestCode: PMOIST	Units: wt%	Prep Date:	RunNo: 16264
Client ID: Mason XRF10	Batch ID: R16264	TestNo: D2216		Analysis Date: 9/17/2007	SeqNo: 257565
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Percent Moisture	5.2	1.0		4.494	13.8 20
Sample ID: 0709387-010ADUP	SampType: DUP	TestCode: PMOIST	Units: wt%	Prep Date:	RunNo: 16264
Sample ID: 0709387-010ADUP Client ID: ZZZZZZ	SampType: DUP Batch ID: R16264	TestCode: PMOIST TestNo: D2216	Units: wt%	Prep Date: Analysis Date: 9/17/2007	RunNo: 16264 SeqNo: 257577
•			Units: wt%	•	

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

R RPD outside accepted recovery limits

CLIENT: Weston Solutions of Illinois, Inc.

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID:	LCS-8390	SampType: LCS	TestCod	e: SW_6020S	Units: µg/Kg		Prep Dat	e: 9/17/20	07	RunNo: 163	308	
Client ID:	LCSS	Batch ID: 8390	TestNo: SW6020A Analysis Date: 9/19/2007				07	SeqNo: 258640				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver		1,100	100	1,000	0	109	80	120				
Sample ID:	MB-8390	SampType: MBLK	TestCod	e: SW_6020S	Units: µg/Kg		Prep Dat	e: 9/17/20	07	RunNo: 163	308	
Client ID:	PBS	Batch ID: 8390	TestNo: SW6020A			Analysis Date: 9/19/2007			SeqNo: 258642			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver		ND	10									
Sample ID:	0709373-001A-MS	SampType: MS	TestCode: SW_6020S Units: µg/Kg-dry				Prep Date: 9/17/2007			RunNo: 16388		
Client ID:	Gay B - XRF6	Batch ID: 8389	TestNo: SW6020A			Analysis Date: 9/21/2007			SeqNo: 259885			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum		4,300,000	9,000	45,070	5,375,000	-2,470	75	125				S
Arsenic		370,000	900	45,070	354,700	27.5	75	125				S
Beryllium		44,000	4,500	45,070	521.9	97.0	75	125				
Chromium		65,000	9,000	45,070	16,440	109	75	125				
Cobalt		53,000	4,500	45,070	13,140	89.5	75	125				
Copper		270,000,000	9,000	45,070	277,700,000	-22,100	75	125				S
Lead		250,000	9,000	45,070	291,000	-97.6	75	125				S
Manganese)	250,000	9,000	45,070	272,500	-57.1	75	125				S
Nickel		67,000	9,000	45,070	32,890	75.9	75	125				
Zinc		170,000	9,000	45,070	182,700	-33.3	75	125				S
Sample ID:	0709373-001A-MSD	SampType: MSD	TestCod	TestCode: SW_6020S Units: µg		-dry Prep Date: 9/17/2007			RunNo: 16388			
Client ID:	Gay B - XRF6	Batch ID: 8389	TestNo: SW6020A				Analysis Date: 9/21/2007		SeqNo: 25 9			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aluminum		5,300,000	10,000	50,300	5,375,000	-125	75	125	4,261,000	21.9	25	S
Arsenic		510,000	1,000	50,300	354,700	301	75	125	367,100	31.8	25	SR
		55,000	5,000	50,300	521.9	108	75	125	44,250	21.3	25	

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

R RPD outside accepted recovery limits

CLIENT: Weston Solutions of Illinois, Inc.

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

Manual Integration used to determine area response

RL Reporting Detection Limit

QC SUMMARY REPORT

TestCode: SW_6020S

R RPD outside accepted recovery limits

Sample ID:	0709373-001A-MSD	SampType: MSD	TestCoo	Units: µg/Kg	(g-dry Prep Date: 9/17/2007				RunNo: 16388				
Client ID:	Gay B - XRF6	Batch ID: 8389	TestN	lo: SW6020A			Analysis Date: 9/21/2007			SeqNo: 259886			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Chromium		78,000	10,000	50,300	16,440	122	75	125	65,360	17.6	25		
Cobalt		62,000	5,000	50,300	13,140	96.8	75	125	53,470	14.5	25		
Copper		370,000,000	10,000	50,300	277,700,000	188,000	75	125	267,700,000	32.6	25	SR	
Lead		380,000	10,000	50,300	291,000	170	75	125	247,000	41.6	25	SR	
Manganese		280,000	10,000	50,300	272,500	18.8	75	125	246,800	13.3	25	S	
Nickel		80,000	10,000	50,300	32,890	93.8	75	125	67,130	17.6	25		
Zinc		230,000	10,000	50,300	182,700	98.4	75	125	167,600	32.3	25	R	
Sample ID:	LCS-8389	SampType: LCS	TestCoo	Units: µg/Kg		Prep Date: 9/17/2007			RunNo: 16388				
Client ID:	LCSS	Batch ID: 8389	TestNo: SW6020A				Analysis Date: 9/21/2007				SeqNo: 259914		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua	
Aluminum		1,000	1,000	1,000	0	102	80	120					
Arsenic		1,000	100	1,000	0	102	80	120					
Beryllium		1,000	500	1,000	0	100	80	120					
Chromium		1,000	1,000	1,000	0	104	80	120					
Cobalt		1,000	500	1,000	0	104	80	120					
Copper		1,000	1,000	1,000	0	105	80	120					
Lead		980	1,000	1,000	0	97.9	80	120				J	
Manganese		1,000	1,000	1,000	0	104	80	120					
Nickel		1,000	1,000	1,000	0	102	80	120					
Zinc		950	1,000	1,000	0	94.8	80	120				J	
Sample ID:	MB-8389	SampType: MBLK	TestCoo	le: SW_6020S	Units: µg/Kg		Prep Dat	e: 9/17/20	07	RunNo: 163	888		
Client ID:	PBS	Batch ID: 8389	TestN	lo: SW6020A			Analysis Date: 9/21/2007			SeqNo: 259915			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua	
Aluminum		ND	100									•	
Arsenic		ND	10										
Beryllium		ND	50										
Chromium		ND	100										

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID:	MB-8389	SampType:	MBLK	TestCod	e: SW_6020S	Units: µg/Kg		Prep Da	te: 9/17/2007		RunNo: 163	388	
Client ID:	PBS	Batch ID:	8389	TestN	o: SW6020A			Analysis Da	te: 9/21/2007		SeqNo: 259	915	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Cobalt			ND	50									
Copper			ND	100									
Lead			ND	100									
Manganese	e		ND	100									
Nickel			ND	100									
Strontium			ND	2,500									
Zinc			ND	100									
Sample ID:	LCS-8389	SampType:	LCS	TestCod	e: SW_6020S	Units: μg/Kg		Prep Da	te: 9/17/2007		RunNo: 164	110	
Client ID:	LCSS	Batch ID:	8389	TestN	o: SW6020A			Analysis Da	te: 9/24/2007		SeqNo: 260	0416	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Copper			980	1,000	1,000	0	98.0	80	120				J
Sample ID:	MB-8389	SampType:	MBLK	TestCod	e: SW_6020S	Units: µg/Kg		Prep Da	te: 9/17/2007		RunNo: 164	110	
Client ID:	PBS	Batch ID:	8389	TestN	o: SW6020A			Analysis Da	te: 9/24/2007		SeqNo: 260)417	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Copper			ND	100									
Sample ID:	0709373-001A-MS	SampType:	MS	TestCod	e: SW_6020S	Units: µg/Kg-c	lry	Prep Da	te: 9/17/2007		RunNo: 164	110	
Client ID:	Gay B - XRF6	Batch ID:	8389	TestN	o: SW6020A			Analysis Da	te: 9/24/2007		SeqNo: 260)594	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Lithium			54,000	900	45,070	2,975	114	75	125				
Sample ID:	0709373-001A-MSD	SampType:	MSD	TestCod	e: SW_6020S	Units: µg/Kg-c	lry	Prep Da	te: 9/17/2007		RunNo: 164	110	
Client ID:	Gay B - XRF6	Batch ID:	8389	TestN	o: SW6020A			Analysis Da	te: 9/24/2007		SeqNo: 260)595	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID: Client ID:	0709373-001A-MSD Gay B - XRF6	SampType: MSD Batch ID: 8389		le: SW_6020S lo: SW6020A	Units: µg/Kg-o	lry	Prep Date Analysis Date	e: 9/17/200 e: 9/24/200		RunNo: 164 SeqNo: 260		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lithium		59,000	1,000	50,300	2,975	112	75	125	54,490	8.42	25	
Sample ID:	LCS-8389	SampType: LCS	TestCod	le: SW_6020S	Units: µg/Kg		Prep Date	e: 9/17/20)7	RunNo: 164	10	
Client ID:	LCSS	Batch ID: 8389	TestN	lo: SW6020A			Analysis Date	e: 9/24/20 0	07	SeqNo: 260	622	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lithium		1,200	1,000	1,000	0	115	80	120				
Sample ID:	MB-8389	SampType: MBLK	TestCod	le: SW_6020S	Units: µg/Kg		Prep Date	e: 9/17/20)7	RunNo: 164	10	
Client ID:	PBS	Batch ID: 8389	TestN	lo: SW6020A			Analysis Date	e: 9/24/20 0	07	SeqNo: 260	624	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lithium		ND	100									
Sample ID:	LCS-8389	SampType: LCS	TestCod	le: SW_6020S	Units: µg/Kg		Prep Date	e: 9/17/20)7	RunNo: 164	10	
Client ID:	LCSS	Batch ID: 8389	TestN	lo: SW6020A			Analysis Date	e: 9/24/20 0	07	SeqNo: 261	241	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum		ND	1,000	1,000	0	0	80	120				S
Arsenic		ND	100	1,000	0	0	80	120				S
Beryllium		ND	500	1,000	0	0	80	120				S
Chromium		ND	1,000	1,000	0	0	80	120				S
Cobalt		ND	500	1,000	0	0	80	120				S
L'oppor		ND	1,000	1,000	0	0	80	120				S
Copper		ND	1,000	1,000	0	0	80	120 120				S
Lead		4 400	1 000	4 000								
Lead Manganese)	1,100 ND	1,000	1,000	0	109	80					c
Lead	•	1,100 ND ND	1,000 1,000 100	1,000 1,000 1,000	0 0 0	109 0 0	80 80	120 120 120				S S

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID: MB-8389	SampType: MBLK	TestCode: SW_6020	OS Units: μg/Kg		Prep Date: 9/17/2007	RunNo: 16410	
Client ID: PBS	Batch ID: 8389	TestNo: SW6020	4		Analysis Date: 9/24/2007	SeqNo: 261242	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	ND	100					
Arsenic	ND	10					
Beryllium	ND	50					
Chromium	ND	100					
Cobalt	ND	50					
Copper	ND	100					
Lead	ND	100					
Lithium	ND	100					
Manganese	ND	100					
Nickel	ND	100					
Silver	ND	10					
Strontium	ND	2,500					
Zinc	ND	100					

RL Reporting Detection Limit

M Manual Integration used to determine area response

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_7471S

Sample ID:	MB-8401	SampType: MBLI	TestCode: SW 7471	S Units: µg/Kg	Prep Date: 9/18/2007	RunNo: 16278
Client ID:	PBS	Batch ID: 8401	TestNo: SW7471A		Analysis Date: 9/18/2007	SeqNo: 257909
Analyte		Resu	lt PQL SPK value	SPK Ref Val %RE	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		N	D 16			
Sample ID:	LCS-8401	SampType: LCS	TestCode: SW_7471	S Units: µg/Kg	Prep Date: 9/18/2007	RunNo: 16278
Client ID:	LCSS	Batch ID: 8401	TestNo: SW7471A	.	Analysis Date: 9/18/2007	SeqNo: 257910
Analyte		Resu	lt PQL SPK value	SPK Ref Val %RE	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		17	0 17 166.7	0 10	4 80 120	
Sample ID:	0709345-003A-MS	SampType: MS	TestCode: SW_7471	S Units: µg/Kg-dry	Prep Date: 9/18/2007	RunNo: 16278
Client ID:	ZZZZZZ	Batch ID: 8401	TestNo: SW7471A	1	Analysis Date: 9/18/2007	SeqNo: 257912
Analyte		Resu	lt PQL SPK value	SPK Ref Val %RE	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		32	0 23 231.6	122.9 83.	3 80 120	
Sample ID:	0709345-003A-MSD	SampType: MSD	TestCode: SW_7471	S Units: µg/Kg-dry	Prep Date: 9/18/2007	RunNo: 16278
Client ID:	ZZZZZZ	Batch ID: 8401	TestNo: SW7471A		Analysis Date: 9/18/2007	SeqNo: 257913
Analyte		Resu	lt PQL SPK value	SPK Ref Val %RE	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		33	0 22 215.6	122.9 97.	1 80 120 315.7	5.06 25
Sample ID:	0709361-006B-MS	SampType: MS	TestCode: SW_7471	S Units: µg/Kg-dry	Prep Date: 9/18/2007	RunNo: 16278
Client ID:	ZZZZZZ	Batch ID: 8401	TestNo: SW7471A	ı.	Analysis Date: 9/18/2007	SeqNo: 257926
Analyte		Resu	lt PQL SPK value	SPK Ref Val %RE	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		93	0 25 248.9	866.8 26.	2 80 120	S
Sample ID:	0709361-006B-MSD	SampType: MSD	TestCode: SW_7471	S Units: µg/Kg-dry	Prep Date: 9/18/2007	RunNo: 16278
Client ID:	ZZZZZZ	Batch ID: 8401	TestNo: SW7471A	1	Analysis Date: 9/18/2007	SeqNo: 257927
Analyte		Resu	lt PQL SPK value	SPK Ref Val %RE	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_7471S

Sample ID:	0709361-006B-MSD	SampType: MSD Batch ID: 8401	TestCode: SW_7471S Units: μ g/Kg-dry Prep Date: 9/18/2007 TestNo: SW7471A Analysis Date: 9/18/2007	RunNo: 16278 SeqNo: 257927
Analyte		Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		960	27 270.5 866.8 36.0 80 120 931.9	3.42 25 S
Sample ID:		SampType: MBLK	TestCode: SW_7471S Units: μg/Kg Prep Date: 9/18/2007	RunNo: 16278
Client ID:	PBS	Batch ID: 8402	TestNo: SW7471A Analysis Date: 9/18/2007	SeqNo: 257939
Analyte		Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		ND	24	
Sample ID:	LCS-8402	SampType: LCS	TestCode: SW_7471S Units: µg/Kg Prep Date: 9/18/2007	RunNo: 16278
Client ID:	LCSS	Batch ID: 8402	TestNo: SW7471A Analysis Date: 9/18/2007	SeqNo: 257940
Analyte		Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		190	21 208.3 0 91.3 80 120	
Sample ID:	0709387-001A-MS	SampType: MS	TestCode: SW_7471S Units: μg/Kg-dry Prep Date: 9/18/2007	RunNo: 16278
Client ID:	ZZZZZZ	Batch ID: 8402	TestNo: SW7471A Analysis Date: 9/18/2007	SeqNo: 257942
Analyte		Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		260	21 209.9 52.07 99.6 80 120	
Sample ID:	0709387-001A-MSD	SampType: MSD	TestCode: SW_7471S Units: μg/Kg-dry Prep Date: 9/18/2007	RunNo: 16278
Client ID:	ZZZZZZ	Batch ID: 8402	TestNo: SW7471A Analysis Date: 9/18/2007	SeqNo: 257945
Analyte		Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		310	25 246.4 52.07 104 80 120 261.1	16.5 25
Sample ID:	0709421-001A-MS	SampType: MS	TestCode: SW_7471S Units: μg/Kg Prep Date: 9/18/2007	RunNo: 16278
Client ID:	ZZZZZZ	Batch ID: 8402	TestNo: SW7471A Analysis Date: 9/18/2007	SeqNo: 257958
Analyte		Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_7471S

Sample ID: 070	09421-001A-MS	SampType: MS	TestCod	e: SW_7471S	Units: µg/Kg		Prep Dat	te: 9/18/20	07	RunNo: 162	278	
Client ID: ZZ	ZZZZZ	Batch ID: 8402	TestN	o: SW7471A			Analysis Dat	te: 9/18/20	07	SeqNo: 257	958	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		370	13	128.2	187.1	141	80	120				S
Sample ID: 070	09421-001A-MSD	SampType: MSD	TestCod	e: SW_7471S	Units: µg/Kg		Prep Dat	te: 9/18/20	07	RunNo: 162	278	
Client ID: ZZ	ZZZZZ	Batch ID: 8402	TestN	o: SW7471A			Analysis Dat	te: 9/18/20	07	SeqNo: 257	959	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		360	15	147.1	187.1	120	80	120	367.8	1.27	25	

M Manual Integration used to determine area response

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: Ics-8383	SampType: LCS	TestCod	de: SW_8082S	Units: μg/Kg		Prep Da	te: 9/17/20	07	RunNo: 162	263	
Client ID: LCSS	Batch ID: 8383	TestN	lo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 257	7552	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	170	33	166.7	0	103	70	130				
Aroclor 1260	180	33	166.7	0	106	70	130				
AROCLOR-1016-1	170	33	166.7	0	102	70	130				
AROCLOR-1016-2	170	33	166.7	0	102	70	130				
AROCLOR-1016-3	160	33	166.7	0	98.2	70	130				
AROCLOR-1016-4	180	33	166.7	0	110	70	130				
AROCLOR-1016-5	170	33	166.7	0	105	70	130				
AROCLOR-1260-1	170	33	166.7	0	101	70	130				
AROCLOR-1260-2	170	33	166.7	0	103	70	130				
AROCLOR-1260-3	190	33	166.7	0	111	70	130				
AROCLOR-1260-4	180	33	166.7	0	111	70	130				
AROCLOR-1260-5	170	33	166.7	0	103	70	130				
Surr: Decachlorobiphenyl	9.5		8.300		114	70	130				
Surr: Tetrachloro-m-xylene	8.9		8.300		108	70	130				
Sample ID: mb-8383	SampType: MBLK	TestCod	de: SW_8082S	Units: µg/Kg		Prep Da	te: 9/17/20	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8383	TestN	lo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 25 7	7553	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	33									
Aroclor 1221	ND	33									
Aroclor 1232	ND	33									
Aroclor 1242	ND	33									
Aroclor 1248	ND	33									
Aroclor 1254	ND	33									
Aroclor 1260	ND	33									
Aroclor 1262	ND	33									
	ND	33									
Total PCBs	ND										
Total PCBs AROCLOR-1016-1	ND ND	33									
		33 33									

M Manual Integration used to determine area response

RL Reporting Detection Limit

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: mb-8383	SampType: MBLK	TestCod	e: SW_8082S	Units: μg/Kg		Prep Da	te: 9/17/20	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8383	TestN	o: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 257	' 553	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
AROCLOR-1016-4	ND	33									
AROCLOR-1016-5	ND	33									
AROCLOR-1221-1	ND	33									
AROCLOR-1221-2	ND	33									
AROCLOR-1221-3	ND	33									
AROCLOR-1221-4	ND	33									
AROCLOR-1221-5	ND	33									
AROCLOR-1232-1	ND	33									
AROCLOR-1232-2	ND	33									
AROCLOR-1232-3	ND	33									
AROCLOR-1232-4	ND	33									
AROCLOR-1232-5	ND	33									
AROCLOR-1242-1	ND	33									
AROCLOR-1242-2	ND	33									
AROCLOR-1242-3	ND	33									
AROCLOR-1242-4	ND	33									
AROCLOR-1242-5	ND	33									
AROCLOR-1248-1	ND	33									
AROCLOR-1248-2	ND	33									
AROCLOR-1248-3	ND	33									
AROCLOR-1248-4	ND	33									
AROCLOR-1248-5	ND	33									
AROCLOR-1254-1	ND	33									
AROCLOR-1254-2	ND	33									
AROCLOR-1254-3	ND	33									
AROCLOR-1254-4	ND	33									
AROCLOR-1254-5	ND	33									
AROCLOR-1260-1	ND	33									
AROCLOR-1260-2	ND	33									
AROCLOR-1260-3	ND	33									
AROCLOR-1260-4	ND	33									

Qualifiers: E Value a

Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: mb-8383	SampType: MBLK	TestCo	de: SW_8082S	Units: µg/Kg		Prep Da	te: 9/17/20	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8383	TestN	No: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 257	7553	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
AROCLOR-1260-5	ND	33									
AROCLOR-1262-1	ND	33									
AROCLOR-1262-2	ND	33									
AROCLOR-1262-3	ND	33									
AROCLOR-1262-4	ND	33									
AROCLOR-1262-5	ND	33									
Surr: Decachlorobiphenyl	9.7		8.300		117	70	130				
Surr: Tetrachloro-m-xylene	9.2		8.300		111	70	130				
Sample ID: 0709387-006a-ms	SampType: ms	TestCod	de: sw_8082s	Units: µg/Kg-	dry	Prep Da	te: 9/16/20	07	RunNo: 162	263	
Client ID: ZZZZZZ	Batch ID: 8381	TestN	lo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 258	3437	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	170	36	183.0	0	94.8	70	130				
Aroclor 1260	220	36	183.0	0	121	70	130				
AROCLOR-1016-1	160	36	183.0	0	88.8	70	130				
AROCLOR-1016-2	170	36	183.0	0	90.5	70	130				
AROCLOR-1016-3	160	36	183.0	0	86.7	70	130				
AROCLOR-1016-4	190	36	183.0	0	102	70	130				
AROCLOR-1016-5	190	36	183.0	0	106	70	130				
AROCLOR-1260-1	220	36	183.0	0	120	70	130				
AROCLOR-1260-2	220	36	183.0	0	118	70	130				
AROCLOR-1260-3	220	36	183.0	0	121	70	130				
AROCLOR-1260-4	230	36	183.0	0	127	70	130				
/11.00E011 1200 +	200										
AROCLOR-1260-5	220	36	183.0	0	120	70	130				
		36	183.0 9.114	0	120 127	70 70	130 130				

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

SampType: msd	TestCod	de: sw_8082s	Units: µg/K	g-dry	Prep Dat	te: 9/16/20	07	RunNo: 162	263	
Batch ID: 8381	TestN	lo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 258	3438	
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
160	36	183.0	0	87.5	17.2	175	173.4	7.92	25	
220	36	183.0	0	121	51.6	142	221.6	0.328	25	
150	36	183.0	0	83.5	40.4	138	162.6	0	25	
150	36	183.0	0	83.9	45.1	146	165.6	0	25	
150	36	183.0	0	79.5	41.2	140	158.8	0	25	
170	36	183.0	0	90.7	48.8	137	185.8	0	25	
180	36	183.0	0	100	40	138	194.3	0	25	
220	36	183.0	0	122	62	144	219.5	0	25	
210	36	183.0	0	117	46.5	149	215.7	0	25	
210	36	183.0	0	117	50.6	147	221.4	0	25	
230	36	183.0	0	127	40.3	143	232.5	0	25	
220	36	183.0	0	120	38.8	150	218.9	0	25	
11		9.114		118	66.8	151		0	25	
9.4		9.114		103	49.4	143		0	25	
SampType: ms	TestCod	de: sw_8082s	Units: µg/K	g-dry	Prep Dat	te: 9/17/20	07	RunNo: 162	263	
Batch ID: 8383	TestN	lo: SW8082			Analysis Da	te: 9/18/20	07	SeqNo: 258	3443	
Result	PQL	ODK				112-4-129	PPD Pof Val			Qual
	FQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	KED Kel Val	%RPD	RPDLimit	Quai
170	37	185.1	SPK Ref Val	%REC 92.0	LowLimit 70	HighLimit 130	KFD Kei vai	%RPD	RPDLimit	Quai
170 200							KFD Nei Vai	%RPD	RPDLimit	Quai
	37	185.1	0	92.0	70	130	Kr D Kei Vai	%RPD	RPDLimit	Quai
200	37 37	185.1 185.1	0	92.0 110	70 70	130 130	KFD Kei Vai	%RPD	RPDLimit	Qual
200 150	37 37 37	185.1 185.1 185.1	0 0 0	92.0 110 79.5	70 70 70	130 130 130	KFD Kei Vai	%RPD	RPDLimit	Qual
200 150 160	37 37 37 37	185.1 185.1 185.1 185.1	0 0 0 0	92.0 110 79.5 87.7	70 70 70 70	130 130 130 130	KFD Kei Vai	%RPD	RPDLimit	Qual
200 150 160 180	37 37 37 37 37	185.1 185.1 185.1 185.1 185.1	0 0 0 0	92.0 110 79.5 87.7 95.9	70 70 70 70 70	130 130 130 130 130	KFD Kei Val	%RPD	RPDLimit	Qual
200 150 160 180 180	37 37 37 37 37 37	185.1 185.1 185.1 185.1 185.1	0 0 0 0 0	92.0 110 79.5 87.7 95.9 98.1	70 70 70 70 70 70	130 130 130 130 130 130	KFD Kei Val	%RPD	RPDLimit	Qual
200 150 160 180 180	37 37 37 37 37 37 37	185.1 185.1 185.1 185.1 185.1 185.1	0 0 0 0 0 0	92.0 110 79.5 87.7 95.9 98.1 99.1	70 70 70 70 70 70 70	130 130 130 130 130 130 130	KFD Kei Val	%RPD	RPDLimit	Qual
200 150 160 180 180 180	37 37 37 37 37 37 37 37	185.1 185.1 185.1 185.1 185.1 185.1 185.1	0 0 0 0 0 0	92.0 110 79.5 87.7 95.9 98.1 99.1 103	70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130	KFD Kei Val	%RPD	RPDLimit	Qual
200 150 160 180 180 180 190	37 37 37 37 37 37 37 37	185.1 185.1 185.1 185.1 185.1 185.1 185.1 185.1	0 0 0 0 0 0 0	92.0 110 79.5 87.7 95.9 98.1 99.1 103 105	70 70 70 70 70 70 70 70 70	130 130 130 130 130 130 130 130	KFD Kei Val	%RPD	RPDLimit	Qual
	Batch ID: 8381 Result 160 220 150 150 150 170 180 220 210 210 230 220 11 9.4 SampType: ms Batch ID: 8383	Result PQL 160 36 220 36 150 36 150 36 150 36 150 36 150 36 150 36 120 36 220 36 210 36 230 36 220 36 11 9.4 SampType: ms TestCoc Batch ID: 8383 TestN	Result PQL SPK value 160 36 183.0 220 36 183.0 150 36 183.0 150 36 183.0 150 36 183.0 170 36 183.0 180 36 183.0 220 36 183.0 210 36 183.0 230 36 183.0 230 36 183.0 220 36 183.0 230 36 183.0 220 36 183.0 230 36 183.0 24 9.114 9.114 9.4 9.114 SampType: ms TestCode: sw_8082s Batch ID: 8383 TestNo: SW8082	Batch ID: 8381 TestNo: SW8082 Result PQL SPK value SPK Ref Val 160 36 183.0 0 220 36 183.0 0 150 36 183.0 0 150 36 183.0 0 170 36 183.0 0 180 36 183.0 0 220 36 183.0 0 210 36 183.0 0 210 36 183.0 0 230 36 183.0 0 220 36 183.0 0 230 36 183.0 0 11 9.114 9.114 9.4 9.114 9.114 SampType: ms TestCode: sw_8082s Units: μg/Kg	Batch ID: 8381 TestNo: SW8082 Result PQL SPK value SPK Ref Val %REC 160 36 183.0 0 87.5 220 36 183.0 0 121 150 36 183.0 0 83.9 150 36 183.0 0 79.5 170 36 183.0 0 90.7 180 36 183.0 0 100 220 36 183.0 0 117 210 36 183.0 0 117 230 36 183.0 0 117 230 36 183.0 0 127 220 36 183.0 0 127 220 36 183.0 0 127 220 36 183.0 0 120 11 9.114 118 9.4 9.114 103 SampType: ms TestCode: sw_8082s Uni	Result PQL SPK value SPK Ref Val %REC LowLimit 160 36 183.0 0 87.5 17.2 220 36 183.0 0 121 51.6 150 36 183.0 0 83.5 40.4 150 36 183.0 0 83.9 45.1 150 36 183.0 0 79.5 41.2 170 36 183.0 0 90.7 48.8 180 36 183.0 0 100 40 220 36 183.0 0 117 46.5 210 36 183.0 0 117 46.5 210 36 183.0 0 117 40.3 220 36 183.0 0 117 40.5 230 36 183.0 0 127 40.3 220 36 183.0 0 120 38.8 <td>Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 160 36 183.0 0 87.5 17.2 175 220 36 183.0 0 121 51.6 142 150 36 183.0 0 83.5 40.4 138 150 36 183.0 0 83.9 45.1 146 150 36 183.0 0 79.5 41.2 140 170 36 183.0 0 90.7 48.8 137 180 36 183.0 0 100 40 138 220 36 183.0 0 122 62 144 210 36 183.0 0 117 46.5 149 210 36 183.0 0 117 50.6 147 230 36 183.0 0 127 40.3 143 <td< td=""><td>Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 160 36 183.0 0 87.5 17.2 175 173.4 220 36 183.0 0 121 51.6 142 221.6 150 36 183.0 0 83.5 40.4 138 162.6 150 36 183.0 0 83.9 45.1 146 165.6 150 36 183.0 0 79.5 41.2 140 158.8 170 36 183.0 0 90.7 48.8 137 185.8 180 36 183.0 0 100 40 138 194.3 220 36 183.0 0 122 62 144 219.5 210 36 183.0 0 117 46.5 149 215.7 210 36 183.0 0 117 <td< td=""><td>Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 160 36 183.0 0 87.5 17.2 175 173.4 7.92 220 36 183.0 0 121 51.6 142 221.6 0.328 150 36 183.0 0 83.5 40.4 138 162.6 0 150 36 183.0 0 83.9 45.1 146 165.6 0 150 36 183.0 0 79.5 41.2 140 158.8 0 170 36 183.0 0 90.7 48.8 137 185.8 0 180 36 183.0 0 100 40 138 194.3 0 220 36 183.0 0 122 62 144 219.5 0 210 36 183.0 0 117 50.6<td>Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 160 36 183.0 0 87.5 17.2 175 173.4 7.92 25 220 36 183.0 0 121 51.6 142 221.6 0.328 25 150 36 183.0 0 83.5 40.4 138 162.6 0 25 150 36 183.0 0 83.9 45.1 146 165.6 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 90.7 48.8 137 185.8 0 25 170 36 183.0 0 117 46.5 149 2</td></td></td<></td></td<></td>	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 160 36 183.0 0 87.5 17.2 175 220 36 183.0 0 121 51.6 142 150 36 183.0 0 83.5 40.4 138 150 36 183.0 0 83.9 45.1 146 150 36 183.0 0 79.5 41.2 140 170 36 183.0 0 90.7 48.8 137 180 36 183.0 0 100 40 138 220 36 183.0 0 122 62 144 210 36 183.0 0 117 46.5 149 210 36 183.0 0 117 50.6 147 230 36 183.0 0 127 40.3 143 <td< td=""><td>Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 160 36 183.0 0 87.5 17.2 175 173.4 220 36 183.0 0 121 51.6 142 221.6 150 36 183.0 0 83.5 40.4 138 162.6 150 36 183.0 0 83.9 45.1 146 165.6 150 36 183.0 0 79.5 41.2 140 158.8 170 36 183.0 0 90.7 48.8 137 185.8 180 36 183.0 0 100 40 138 194.3 220 36 183.0 0 122 62 144 219.5 210 36 183.0 0 117 46.5 149 215.7 210 36 183.0 0 117 <td< td=""><td>Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 160 36 183.0 0 87.5 17.2 175 173.4 7.92 220 36 183.0 0 121 51.6 142 221.6 0.328 150 36 183.0 0 83.5 40.4 138 162.6 0 150 36 183.0 0 83.9 45.1 146 165.6 0 150 36 183.0 0 79.5 41.2 140 158.8 0 170 36 183.0 0 90.7 48.8 137 185.8 0 180 36 183.0 0 100 40 138 194.3 0 220 36 183.0 0 122 62 144 219.5 0 210 36 183.0 0 117 50.6<td>Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 160 36 183.0 0 87.5 17.2 175 173.4 7.92 25 220 36 183.0 0 121 51.6 142 221.6 0.328 25 150 36 183.0 0 83.5 40.4 138 162.6 0 25 150 36 183.0 0 83.9 45.1 146 165.6 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 90.7 48.8 137 185.8 0 25 170 36 183.0 0 117 46.5 149 2</td></td></td<></td></td<>	Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 160 36 183.0 0 87.5 17.2 175 173.4 220 36 183.0 0 121 51.6 142 221.6 150 36 183.0 0 83.5 40.4 138 162.6 150 36 183.0 0 83.9 45.1 146 165.6 150 36 183.0 0 79.5 41.2 140 158.8 170 36 183.0 0 90.7 48.8 137 185.8 180 36 183.0 0 100 40 138 194.3 220 36 183.0 0 122 62 144 219.5 210 36 183.0 0 117 46.5 149 215.7 210 36 183.0 0 117 <td< td=""><td>Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 160 36 183.0 0 87.5 17.2 175 173.4 7.92 220 36 183.0 0 121 51.6 142 221.6 0.328 150 36 183.0 0 83.5 40.4 138 162.6 0 150 36 183.0 0 83.9 45.1 146 165.6 0 150 36 183.0 0 79.5 41.2 140 158.8 0 170 36 183.0 0 90.7 48.8 137 185.8 0 180 36 183.0 0 100 40 138 194.3 0 220 36 183.0 0 122 62 144 219.5 0 210 36 183.0 0 117 50.6<td>Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 160 36 183.0 0 87.5 17.2 175 173.4 7.92 25 220 36 183.0 0 121 51.6 142 221.6 0.328 25 150 36 183.0 0 83.5 40.4 138 162.6 0 25 150 36 183.0 0 83.9 45.1 146 165.6 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 90.7 48.8 137 185.8 0 25 170 36 183.0 0 117 46.5 149 2</td></td></td<>	Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 160 36 183.0 0 87.5 17.2 175 173.4 7.92 220 36 183.0 0 121 51.6 142 221.6 0.328 150 36 183.0 0 83.5 40.4 138 162.6 0 150 36 183.0 0 83.9 45.1 146 165.6 0 150 36 183.0 0 79.5 41.2 140 158.8 0 170 36 183.0 0 90.7 48.8 137 185.8 0 180 36 183.0 0 100 40 138 194.3 0 220 36 183.0 0 122 62 144 219.5 0 210 36 183.0 0 117 50.6 <td>Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 160 36 183.0 0 87.5 17.2 175 173.4 7.92 25 220 36 183.0 0 121 51.6 142 221.6 0.328 25 150 36 183.0 0 83.5 40.4 138 162.6 0 25 150 36 183.0 0 83.9 45.1 146 165.6 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 90.7 48.8 137 185.8 0 25 170 36 183.0 0 117 46.5 149 2</td>	Batch ID: 8381 TestNo: SW8082 SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 160 36 183.0 0 87.5 17.2 175 173.4 7.92 25 220 36 183.0 0 121 51.6 142 221.6 0.328 25 150 36 183.0 0 83.5 40.4 138 162.6 0 25 150 36 183.0 0 83.9 45.1 146 165.6 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 79.5 41.2 140 158.8 0 25 150 36 183.0 0 90.7 48.8 137 185.8 0 25 170 36 183.0 0 117 46.5 149 2

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

M Manual Integration used to determine area response

RL Reporting Detection Limit

QC SUMMARY REPORT

TestCode: SW_8082S

R RPD outside accepted recovery limits

Page 40 of 70

Sample ID: 0709387-010a-ms	SampType: ms	TestCod	e: sw_8082s	Units: µg/Kg-	dry	Prep Date	e: 9/17/20	07	RunNo: 162	263	
Client ID: ZZZZZZ	Batch ID: 8383	TestN	o: SW8082			Analysis Date	e: 9/18/20	07	SeqNo: 258	3443	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Decachlorobiphenyl	13		9.218		136	70	130				S
Surr: Tetrachloro-m-xylene	9.7		9.218		105	70	130				
Sample ID: 0709387-010a-msd	SampType: msd	TestCod	e: sw_8082s	Units: µg/Kg-	dry	Prep Date	e: 9/17/20	07	RunNo: 162	263	
Client ID: ZZZZZZ	Batch ID: 8383	TestN	o: SW8082			Analysis Date	e: 9/18/20	07	SeqNo: 258	3444	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	170	37	185.1	0	94.1	17.2	175	170.4	2.16	25	
Aroclor 1260	210	37	185.1	0	113	51.6	142	203.8	2.99	25	
AROCLOR-1016-1	150	37	185.1	0	81.1	40.4	138	147.2	0	25	
AROCLOR-1016-2	170	37	185.1	0	89.4	45.1	146	162.3	0	25	
AROCLOR-1016-3	180	37	185.1	0	98.2	41.2	140	177.4	0	25	
AROCLOR-1016-4	190	37	185.1	0	100	48.8	137	181.6	0	25	
AROCLOR-1016-5	190	37	185.1	0	102	40	138	183.5	0	25	
AROCLOR-1260-1	190	37	185.1	0	103	62	144	189.8	0	25	
AROCLOR-1260-2	200	37	185.1	0	109	46.5	149	194.7	0	25	
AROCLOR-1260-3	220	37	185.1	0	120	50.6	147	214.6	0	25	
AROCLOR-1260-4	220	37	185.1	0	121	40.3	143	216.4	0	25	
AROCLOR-1260-5	210	37	185.1	0	115	38.8	150	203.4	0	25	
Surr: Decachlorobiphenyl	0		9.218		0	66.8	151		0	25	S
Surr: Tetrachloro-m-xylene	9.8		9.218		107	49.4	143		0	25	
Sample ID: Ics-8381	SampType: Ics	TestCod	e: sw_8082s	Units: µg/Kg		Prep Date	e: 9/16/20	07	RunNo: 162	263	
Client ID: LCSS	Batch ID: 8381	TestN	o: SW8082			Analysis Date	e: 9/17/20	07	SeqNo: 258	3466	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	180	33	166.7	0	111	70	130				
Aroclor 1260	180	33	166.7	0	105	70	130				
AROCLOR-1016-1	160	33	166.7	0	97.3	70	130				
AROCLOR-1016-2	180	33	166.7	0	108	70	130				
AROCLOR-1016-3	150	33	166.7	0	91.8	70	130				
Qualifiers: E Value above	quantitation range		H Holdin	g times for preparation	or analysis	exceeded	J A	Analyte detected be	elow quantitation	ı lin	

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Work Order: 0709373

Torch Lake SA - 20405.016.002.0274.00 **Project:**

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: Ics-8381	SampType: Ics	TestCode: sw_80	82s Units: μg/Kg		Prep Dat	e: 9/16/20	07	RunNo: 162	263	
Client ID: LCSS	Batch ID: 8381	TestNo: SW80	82		Analysis Dat	e: 9/17/20	07	SeqNo: 258	3466	
Analyte	Result	PQL SPK va	lue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
AROCLOR-1016-4	170	33 16	6.7 0	102	70	130				
AROCLOR-1016-5	260	33 16	6.7 0	155	70	130				S
AROCLOR-1260-1	160	33 16	6.7 0	96.5	70	130				
AROCLOR-1260-2	170	33 16	6.7 0	103	70	130				
AROCLOR-1260-3	180	33 16	6.7 0	110	70	130				
AROCLOR-1260-4	180	33 16	6.7 0	110	70	130				
AROCLOR-1260-5	180	33 16	6.7 0	106	70	130				
Surr: Decachlorobiphenyl	9.5	8.3	300	115	70	130				
Surr: Tetrachloro-m-xylene	8.2	8.3	300	98.4	70	130				
Sample ID: mb-8381	SampType: mblk	TestCode: sw_80	982s Units: μg/Kg		Prep Dat	e: 9/16/20	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8381	TestNo: SW80	82		Analysis Dat	e: 9/17/20	07	SeqNo: 258	3471	
Analyte	Result	PQL SPK va	lue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	ND	33								
Aroclor 1221	ND	33								
Aroclor 1232	ND	33								
Aroclor 1242	ND	33								
Aroclor 1248	ND	33								
Aroclor 1254	ND	33								
Aroclor 1260	ND	33								
Aroclor 1262	ND	33								
Total PCBs	ND	33								
AROCLOR-1016-1	ND	33								
AROCLOR-1016-2	ND	33								
AROCLOR-1016-3	ND	33								
AROCLOR-1016-4	ND	33								
	ND	33								
AROCLOR-1016-5										
AROCLOR-1016-5 AROCLOR-1221-1	ND	33								
		33 33								

M Manual Integration used to determine area response

RL Reporting Detection Limit

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: mb-8381	SampType: mblk	TestCode: sw	_8082s Units: μg/Kg		Prep Da	te: 9/16/2 0	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8381	TestNo: SV	/8082		Analysis Da	te: 9/17/2 0	07	SeqNo: 258	3471	
Analyte	Result	PQL SP	Value SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
AROCLOR-1221-4	ND	33								
AROCLOR-1221-5	ND	33								
AROCLOR-1232-1	ND	33								
AROCLOR-1232-2	ND	33								
AROCLOR-1232-3	ND	33								
AROCLOR-1232-4	ND	33								
AROCLOR-1232-5	ND	33								
AROCLOR-1242-1	ND	33								
AROCLOR-1242-2	ND	33								
AROCLOR-1242-3	ND	33								
AROCLOR-1242-4	ND	33								
AROCLOR-1242-5	ND	33								
AROCLOR-1248-1	ND	33								
AROCLOR-1248-2	ND	33								
AROCLOR-1248-3	ND	33								
AROCLOR-1248-4	ND	33								
AROCLOR-1248-5	ND	33								
AROCLOR-1254-1	ND	33								
AROCLOR-1254-2	ND	33								
AROCLOR-1254-3	ND	33								
AROCLOR-1254-4	ND	33								
AROCLOR-1254-5	ND	33								
AROCLOR-1260-1	ND	33								
AROCLOR-1260-2	ND	33								
AROCLOR-1260-3	ND	33								
AROCLOR-1260-4	ND	33								
AROCLOR-1260-5	ND	33								
AROCLOR-1262-1	ND	33								
AROCLOR-1262-2	ND	33								
AROCLOR-1262-3	ND	33								
AROCLOR-1262-4	ND	33								

Qualifiers:

- Value above quantitation range
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

- Holding times for preparation or analysis exceeded
- D Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- Analyte detected below quantitation lin
- R RPD outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: mb-8381	SampType: mblk	TestCode: sw_8082	s Units: μg/Kg		Prep Da	te: 9/16/20	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8381	TestNo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 258	3471	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
AROCLOR-1262-5	ND	33								
Surr: Decachlorobiphenyl	9.0	8.300	1	109	70	130				
Surr: Tetrachloro-m-xylene	8.4	8.300	1	101	70	130				

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 10ug/KG LCS 10uL	SampType: LCS	TestCoo	de: SW_8260S	Units: µg/Kg		Prep Da	te:		RunNo: 16 4	116	
Client ID: LCSS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/21/20	07	SeqNo: 260	307	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	460	50	500.0	0	92.7	70	130				
1,1,1-Trichloroethane	490	50	500.0	0	98.9	70	130				
1,1,2,2-Tetrachloroethane	450	50	500.0	0	90.5	70	130				
1,1,2-Trichloro-1,2,2-trifluoroethane	390	50	500.0	0	77.5	70	130				
1,1,2-Trichloroethane	430	50	500.0	0	85.4	70	130				
1,1-Dichloroethane	530	50	500.0	0	106	70	130				
1,1-Dichloroethene	530	50	500.0	0	105	70	130				
1,1-Dichloropropene	450	50	500.0	0	89.2	70	130				
1,2,3-Trichlorobenzene	420	50	500.0	0	85.0	70	130				
1,2,3-Trichloropropane	390	50	500.0	0	78.1	70	130				
1,2,3-Trimethylbenzene	430	50	500.0	0	86.0	70	130				
1,2,4-Trichlorobenzene	430	250	500.0	0	86.9	70	130				
1,2,4-Trimethylbenzene	450	50	500.0	0	90.6	70	130				
1,2-Dibromo-3-chloropropane	390	250	500.0	0	78.8	70	130				
1,2-Dichlorobenzene	450	50	500.0	0	90.8	70	130				
1,2-Dichloroethane	590	50	500.0	0	117	70	130				
1,2-Dichloropropane	460	50	500.0	0	92.3	70	130				
1,3,5-Trimethylbenzene	460	50	500.0	0	92.2	70	130				
1,3-Dichlorobenzene	480	50	500.0	0	96.2	70	130				
1,3-Dichloropropane	460	50	500.0	0	92.7	70	130				
1,4-Dichlorobenzene	450	50	500.0	0	90.8	70	130				
2,2-Dichloropropane	470	50	500.0	0	94.4	70	130				
2-Chloroethyl vinyl ether	440	500	500.0	0	87.9	70	130				J
2-Chlorotoluene	440	50	500.0	0	87.4	70	130				
2-Hexanone	440	2,500	500.0	0	88.2	70	130				J
2-Methylnaphthalene	450	250	500.0	0	89.3	70	130				
2-Nitropropane	390	200	500.0	0	78.8	70	130				
4-Chlorotoluene	450	50	500.0	0	90.6	70	130				
Acetone	480	2,500	500.0	0	95.9	70	130				J
Acrylonitrile	480	250	500.0	0	95.7	70	130				
Benzene	440	30	500.0	0	88.7	70	130				

Qualifiers: E Value

Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 10ug/KG LCS 10uL	SampType: LCS		de: SW_8260S	Units: µg/Kg		Prep Da			RunNo: 16 4		
Client ID: LCSS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/21/20	07	SeqNo: 260	307	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromobenzene	460	50	500.0	0	92.3	70	130				
Bromochloromethane	510	50	500.0	0	101	70	130				
Bromodichloromethane	480	50	500.0	0	95.8	70	130				
Bromoform	430	50	500.0	0	85.9	70	130				
Bromomethane	820	250	500.0	0	165	70	130				S
Carbon disulfide	470	250	500.0	0	93.6	70	130				
Carbon tetrachloride	480	50	500.0	0	95.9	70	130				
Chlorobenzene	430	50	500.0	0	85.8	70	130				
Chloroethane	700	250	500.0	0	141	70	130				S
Chloroform	490	50	500.0	0	98.7	70	130				
Chloromethane	420	50	500.0	0	83.6	70	130				
cis-1,2-Dichloroethene	480	50	500.0	0	95.4	70	130				
cis-1,3-Dichloropropene	430	50	500.0	0	85.2	70	130				
Dibromochloromethane	470	50	500.0	0	94.3	70	130				
Dibromomethane	480	50	500.0	0	96.3	70	130				
Dichlorodifluoromethane	380	50	500.0	0	76.3	70	130				
Dichloromethane	540	250	500.0	0	107	70	130				
Diethyl ether	520	250	500.0	0	103	70	130				
Ethyl methacrylate	430	50	500.0	0	86.1	70	130				
Ethylbenzene	460	50	500.0	0	91.2	70	130				
Ethylene dibromide	480	50	500.0	0	95.0	70	130				
Hexachlorobutadiene	500	250	500.0	0	99.3	70	130				
Hexachloroethane	270	50	500.0	0	54.3	70	130				S
Isopropyl ether	550	250	500.0	0	110	70	130				
Isopropylbenzene	460	50	500.0	0	91.9	70	130				
m,p-Xylene	920	100	1,000	0	91.5	70	130				
Methyl ethyl ketone	470	250	500.0	0	93.7	70	130				
Methyl lodide	540	250	500.0	0	108	70	130				
Methyl isobutyl ketone	460	500	500.0	0	92.5	70	130				J
Methyl tert-butyl ether	1,100	250	1,000	0	106	70	130				-
Naphthalene	420	250	500.0	0	84.4	70	130				

Qualifiers:

E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

Manual Integration used to determine area response

RL Reporting Detection Limit

QC SUMMARY REPORT

TestCode: SW_8260S

R RPD outside accepted recovery limits

Page 46 of 70

Sample ID: 10ug/KG LCS 10uL	SampType: LCS	TestCod	le: SW_8260S	Units: µg/Kg		Prep Date) :		RunNo: 16 4	16	
Client ID: LCSS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Date	e: 9/21/20	07	SeqNo: 260	307	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
n-Butylbenzene	430	50	500.0	0	86.2	70	130				
n-Propylbenzene	450	50	500.0	0	90.8	70	130				
o-Xylene	440	50	500.0	0	87.2	70	130				
p-Isopropyltoluene	460	50	500.0	0	91.6	70	130				
sec-Butylbenzene	440	50	500.0	0	88.0	70	130				
Styrene	460	50	500.0	0	91.3	70	130				
t-Butyl alcohol	2,800	2,000	2,500	0	111	70	130				
tert-Amyl Methyl Ether	470	200	500.0	0	93.3	70	130				
tert-Butyl Ethyl Ether	530	250	500.0	0	107	70	130				
tert-Butylbenzene	450	50	500.0	0	90.0	70	130				
Tetrachloroethene	470	50	500.0	0	94.1	70	130				
Toluene	440	50	500.0	0	87.5	70	130				
trans-1,2-Dichloroethene	530	50	500.0	0	106	70	130				
trans-1,3-Dichloropropene	430	50	500.0	0	85.2	70	130				
trans-1,4-Dichloro-2-butene	470	50	500.0	0	94.0	70	130				
Trichloroethene	440	50	500.0	0	88.6	70	130				
Trichlorofluoromethane	190	50	500.0	0	37.7	70	130				S
Vinyl chloride	460	40	500.0	0	91.6	70	130				
Xylenes, Total	1,400	150	1,500	0	90.1	70	130				
Surr: 4-Bromofluorobenzene	2,900		2,500		117	90	115				S
Surr: Dibromofluoromethane	2,900		2,500		116	88.4	108				S
Surr: Toluene-d8	2,700		2,500		109	90	112				
Sample ID: MLKB 1mLJW07100	SampType: MBLK	TestCod	le: SW_8260S	Units: µg/Kg	·	Prep Date	e:		RunNo: 164	16	
Client ID: PBS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Date	e: 9/21/20	07	SeqNo: 260	308	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	50									
1,1,1-Trichloroethane	ND	50									
1,1,2,2-Tetrachloroethane	ND	50									
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	50									

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: MLKB 1mLJW07100	SampType: MBLK	TestCo	de: SW_8260 \$	Units: μg/Kg		Prep Da	te:		RunNo: 164	116	
Client ID: PBS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/21/20	07	SeqNo: 260	308	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,2-Trichloroethane	ND	50									
1,1-Dichloroethane	ND	50									
1,1-Dichloroethene	ND	50									
1,1-Dichloropropene	ND	50									
1,2,3-Trichlorobenzene	ND	50									
1,2,3-Trichloropropane	ND	50									
1,2,3-Trimethylbenzene	ND	50									
1,2,4-Trichlorobenzene	ND	250									
1,2,4-Trimethylbenzene	ND	50									
1,2-Dibromo-3-chloropropane	ND	250									
1,2-Dichlorobenzene	ND	50									
1,2-Dichloroethane	ND	50									
1,2-Dichloropropane	ND	50									
1,3,5-Trimethylbenzene	ND	50									
1,3-Dichlorobenzene	ND	50									
1,3-Dichloropropane	ND	50									
1,4-Dichlorobenzene	ND	50									
2,2-Dichloropropane	ND	50									
2-Chloroethyl vinyl ether	ND	500									
2-Chlorotoluene	ND	50									
2-Hexanone	ND	2,500									
2-Methylnaphthalene	ND	250									
2-Nitropropane	ND	200									
4-Chlorotoluene	ND	50									
Acetone	320	2,500									J
Acrylonitrile	ND	250									-
Benzene	ND	30									
Bromobenzene	ND	50									
Bromochloromethane	ND	50									
Bromodichloromethane	ND	50									
Bromoform	ND	50									

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

	SampType: MBLK	1 0310001	e: SW_8260S	Units: μg/Kg		Prep Da	ite:		RunNo: 16 4	116	
Client ID: PBS	Batch ID: R16416	TestNo	o: SW8260B			Analysis Da	te: 9/21/20	007	SeqNo: 260	308	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromomethane	ND	250									
Carbon disulfide	ND	250									
Carbon tetrachloride	ND	50									
Chlorobenzene	ND	50									
Chloroethane	ND	250									
Chloroform	ND	50									
Chloromethane	ND	50									
cis-1,2-Dichloroethene	ND	50									
cis-1,3-Dichloropropene	ND	50									
Dibromochloromethane	ND	50									
Dibromomethane	ND	50									
Dichlorodifluoromethane	ND	50									
Dichloromethane	56	250									J
Diethyl ether	ND	250									
Ethyl methacrylate	ND	50									
Ethylbenzene	ND	50									
Ethylene dibromide	ND	50									
Hexachlorobutadiene	ND	250									
Hexachloroethane	ND	50									
Isopropyl ether	ND	250									
Isopropylbenzene	ND	50									
m,p-Xylene	ND	100									
Methyl ethyl ketone	ND	250									
Methyl Iodide	26	250									J
Methyl isobutyl ketone	ND	500									
Methyl tert-butyl ether	ND	250									
Naphthalene	ND	250									
n-Butylbenzene	ND	50									
n-Propylbenzene	ND	50									
o-Xylene	ND	50									
p-Isopropyltoluene	ND	50									

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

RL Reporting Detection Limit

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

Page 49 of 70

TestCode: SW_8260S

Sample ID: MLKB 1mLJW07100 Client ID: PBS	SampType: MBLK Batch ID: R16416		de: SW_8260S No: SW8260B	Units: μg/Kg		Prep Da Analysis Da		07	RunNo: 164 SeqNo: 260		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
ec-Butylbenzene	ND	50									
Styrene	ND	50									
-Butyl alcohol	ND	2,000									
ert-Amyl Methyl Ether	ND	200									
ert-Butyl Ethyl Ether	ND	250									
ert-Butylbenzene	ND	50									
etrachloroethene	ND	50									
oluene	ND	50									
rans-1,2-Dichloroethene	ND	50									
rans-1,3-Dichloropropene	ND	50									
ans-1,4-Dichloro-2-butene	ND	50									
richloroethene	ND	50									
richlorofluoromethane	ND	50									
'inyl chloride	ND	40									
(ylenes, Total	ND	150									
Surr: 4-Bromofluorobenzene	2,900		2,500		116	90	115				S
Surr: Dibromofluoromethane	2,800		2,500		114	88.4	108				S
Surr: Toluene-d8	2,700		2,500		109	90	112				
,4-Dioxane	ND	25,000									
ample ID: 0709505-006A-MS	SampType: MS	TestCo	de: SW_8260S	Units: µg/Kg-	dry	Prep Da	te:		RunNo: 164	16	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	No: SW8260B			Analysis Da	te: 9/21/20	07	SeqNo: 260	315	
nalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
,1,1,2-Tetrachloroethane	490	52	515.2	0	94.6	81.7	109				
,1,1-Trichloroethane	540	52	515.2	0	105	73.7	114				
,1,2,2-Tetrachloroethane	490	52	515.2	0	94.6	72.6	139				
,1,2-Trichloro-1,2,2-trifluoroethane	420	52	515.2	0	82.0	62.1	118				
,1,2-Trichloroethane	500	52	515.2	0	96.2	68.8	130				
,1-Dichloroethane	590	52	515.2	0	114	79.3	111				S
,1-Dichloroethene	600	52	515.2	0	116	67.3	116				
Qualifiers: E Value above qu	uantitation range		H Holdin	g times for preparation	or analysis	exceeded	J	Analyte detected be	elow quantitation	ı lin	
-	ation used to determine area r	esponse		etected at the Reporting	-			RPD outside accep	=	ts	
		-						•	•	Pao	e 49

Spike Recovery outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709505-006A-MS	SampType: MS	TestCod	de: SW_8260S	Units: μg/l	Kg-dry	Prep Da	te:		RunNo: 164	116	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/21/20	07	SeqNo: 260	315	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloropropene	510	52	515.2	0	99.2	32	140				
1,2,3-Trichlorobenzene	480	52	515.2	0	92.2	87.3	130				
1,2,3-Trichloropropane	430	52	515.2	0	84.3	68.8	112				
1,2,3-Trimethylbenzene	550	52	515.2	72.64	92.8	51.6	132				
1,2,4-Trichlorobenzene	490	260	515.2	0	94.9	87.8	130				
1,2,4-Trimethylbenzene	690	52	515.2	179.3	99.7	76.2	131				
1,2-Dibromo-3-chloropropane	410	260	515.2	0	78.7	45.6	162				
1,2-Dichlorobenzene	500	52	515.2	0	96.1	85.9	113				
1,2-Dichloroethane	660	52	515.2	0	128	85.8	116				S
1,2-Dichloropropane	520	52	515.2	0	101	83.6	110				
1,3,5-Trimethylbenzene	690	52	515.2	156.6	104	44.6	174				
1,3-Dichlorobenzene	530	52	515.2	0	104	84.7	119				
1,3-Dichloropropane	520	52	515.2	0	100	86.2	113				
1,4-Dichlorobenzene	500	52	515.2	0	96.8	85.2	111				
2,2-Dichloropropane	490	52	515.2	0	95.9	40	108				
2-Chloroethyl vinyl ether	480	520	515.2	0	94.0	82	114				J
2-Chlorotoluene	530	52	515.2	0	104	75.7	126				
2-Hexanone	550	2,600	515.2	0	106	51.3	170				J
2-Methylnaphthalene	510	260	515.2	0	99.8	75.2	127				
2-Nitropropane	3,400	210	515.2	0	669	70	130				S
4-Chlorotoluene	510	52	515.2	0	98.2	79.6	130				
Acetone	750	2,600	515.2	280.8	91.5	77.5	159				J
Acrylonitrile	540	260	515.2	0	104	64.8	137				
Benzene	500	31	515.2	0	97.5	52.5	136				
Bromobenzene	530	52	515.2	0	102	84.7	114				
Bromochloromethane	540	52	515.2	0	105	83.1	118				
Bromodichloromethane	580	52	515.2	0	112	60.9	129				
Bromoform	420	52	515.2	0	82.1	77.4	111				
Bromomethane	800	260	515.2	0	155	63.1	189				
Carbon disulfide	510	260	515.2	0	98.7	65.3	113				
Carbon tetrachloride	510	52	515.2	0	99.1	69.7	116				

Qualifiers:

E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709505-006A-MS	SampType: MS	TestCo	de: SW_8260S	Units: μg/l	Kg-dry	Prep Da	te:		RunNo: 164	116	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/21/20	07	SeqNo: 260	315	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	470	52	515.2	0	91.8	80.9	120				
Chloroethane	640	260	515.2	0	124	79.8	154				
Chloroform	550	52	515.2	0	106	80.7	112				
Chloromethane	470	52	515.2	0	90.4	36.2	126				
cis-1,2-Dichloroethene	510	52	515.2	0	99.3	65.6	111				
cis-1,3-Dichloropropene	460	52	515.2	0	88.8	76.4	112				
Dibromochloromethane	480	52	515.2	0	92.5	81.3	110				
Dibromomethane	520	52	515.2	0	100	87.9	118				
Dichlorodifluoromethane	400	52	515.2	0	77.6	27.1	121				
Dichloromethane	570	260	515.2	0	111	65	121				
Diethyl ether	570	260	515.2	0	111	88.2	110				S
Ethyl methacrylate	560	52	515.2	0	109	72.1	128				
Ethylbenzene	530	52	515.2	34.52	97.1	82.3	119				
Ethylene dibromide	500	52	515.2	0	96.6	89.2	115				
Hexachlorobutadiene	570	260	515.2	0	111	69.8	144				
Hexachloroethane	310	52	515.2	0	59.9	27.8	139				
Isopropyl ether	610	260	515.2	0	118	76.7	117				S
Isopropylbenzene	580	52	515.2	51.52	102	77.3	131				
m,p-Xylene	1,100	100	1,030	43.79	99.4	80.2	120				
Methyl ethyl ketone	450	260	515.2	0	87.0	61	126				
Methyl Iodide	550	260	515.2	0	106	70	130				
Methyl isobutyl ketone	600	520	515.2	0	115	59	146				
Methyl tert-butyl ether	1,200	260	1,030	0	116	81.2	116				
Naphthalene	560	260	515.2	79.34	93.3	86.9	133				
n-Butylbenzene	620	52	515.2	112.8	97.7	67.8	125				
n-Propylbenzene	760	52	515.2	246.3	99.5	80.9	125				
o-Xylene	490	52	515.2	0	94.7	71.1	130				
p-Isopropyltoluene	550	52	515.2	0	106	50.1	163				
sec-Butylbenzene	540	52	515.2	31.43	99.6	71.3	139				
Styrene	510	52	515.2	0	98.2	87.8	123				
t-Butyl alcohol	130,000	2,100	2,576	0	4,890	70	130				S

Qualifiers:

E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709505-006A-MS	SampType: MS	TestCo	de: SW_8260S	Units: μg/K	g-dry	Prep Da	te:		RunNo: 16 4	116	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	No: SW8260B			Analysis Da	te: 9/21/20	07	SeqNo: 260	315	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
tert-Amyl Methyl Ether	530	210	515.2	0	103	78.9	111				
tert-Butyl Ethyl Ether	590	260	515.2	0	115	69.9	132				
tert-Butylbenzene	500	52	515.2	0	97.4	80.7	119				
Tetrachloroethene	580	52	515.2	0	113	42.7	186				
Toluene	510	52	515.2	0	98.4	81.9	119				
trans-1,2-Dichloroethene	580	52	515.2	0	113	75.7	115				
trans-1,3-Dichloropropene	460	52	515.2	0	88.8	75.7	111				
trans-1,4-Dichloro-2-butene	540	52	515.2	0	105	52.9	136				
Trichloroethene	510	52	515.2	0	98.2	78.2	120				
Trichlorofluoromethane	740	52	515.2	0	144	70	130				S
Vinyl chloride	490	41	515.2	0	95.2	37.5	128				
Xylenes, Total	1,600	150	1,546	0	101	62.1	143				
Surr: 4-Bromofluorobenzene	3,000		2,576		117	95.9	130				
Surr: Dibromofluoromethane	3,000		2,576		116	90.4	111				S
Surr: Toluene-d8	2,800		2,576		110	100	116				
Sample ID: 0709505-006A-MSD	SampType: MSD	TestCo	de: SW_8260S	Units: μg/K	g-dry	Prep Da	te:		RunNo: 164	116	
Client ID: ZZZZZZ	Batch ID: R16416	Test	No: SW8260B			Analysis Da	te: 9/21/20	07	SeqNo: 260	316	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	480	52	515.2	0	92.7	81.7	109	487.4	2.03	15.7	
1,1,1-Trichloroethane	520	52	515.2	0	102	73.7	114	542.0	3.29	16.8	
1,1,2,2-Tetrachloroethane	490	52	515.2	0	95.6	72.6	139	487.4	1.05	16.7	
1,1,2-Trichloro-1,2,2-trifluoroethane	430	52	515.2	0	82.6	62.1	118	422.5	0.729	25.7	
1,1,2-Trichloroethane	500	52	515.2	0	96.8	68.8	130	495.6	0.622	15.9	
1,1-Dichloroethane	590	52	515.2	0	114	79.3	111	586.3	0.0878	16.6	S
	580	52	515.2	0	112	67.3	116	595.6	3.07	20	
1,1-Dichloroethene	000		5450	0	94.4	32	140	511.1	4.96	18.5	
•	490	52	515.2	O							
1,1-Dichloropropene		52 52	515.2 515.2	0	96.5	87.3	130	475.0	4.56	18.8	
1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	490			_			130 112	475.0 434.3	4.56 2.11	18.8 19.4	

Qualifiers:

Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709505-006A-MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: R16416		de: SW_8260S	Units: μg/K	g-dry	Prep Da		07	RunNo: 164		
Client ID: ZZZZZZ	Balch ID: K10410	resu	lo: SW8260B			Analysis Da	ie. 9/21/20	07	SeqNo: 260	1316	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	500	260	515.2	0	96.4	87.8	130	488.9	1.57	23	
1,2,4-Trimethylbenzene	690	52	515.2	179.3	99.6	76.2	131	692.9	0.0744	20.6	
1,2-Dibromo-3-chloropropane	410	260	515.2	0	79.4	45.6	162	405.5	0.886	48.7	
1,2-Dichlorobenzene	500	52	515.2	0	96.2	85.9	113	495.1	0.104	17.5	
1,2-Dichloroethane	650	52	515.2	0	126	85.8	116	657.4	1.10	13.9	S
1,2-Dichloropropane	530	52	515.2	0	102	83.6	110	520.9	1.08	18.1	
1,3,5-Trimethylbenzene	680	52	515.2	156.6	101	44.6	174	692.4	2.33	19.2	
1,3-Dichlorobenzene	550	52	515.2	0	106	84.7	119	534.8	1.91	22.5	
1,3-Dichloropropane	510	52	515.2	0	98.7	86.2	113	515.2	1.31	17.2	
1,4-Dichlorobenzene	500	52	515.2	0	97.9	85.2	111	498.7	1.13	16.2	
2,2-Dichloropropane	470	52	515.2	0	90.6	40	108	494.1	5.68	16	
2-Chloroethyl vinyl ether	490	520	515.2	0	95.6	82	114	484.3	0	18.4	J
2-Chlorotoluene	530	52	515.2	0	103	75.7	126	533.7	0.290	17.2	
2-Hexanone	570	2,600	515.2	0	110	51.3	170	547.7	0	40	J
2-Methylnaphthalene	540	260	515.2	0	104	75.2	127	514.2	4.60	26.8	
2-Nitropropane	2,400	210	3,606	0	67.0	70	130	3,446	35.2	56.4	S
4-Chlorotoluene	490	52	515.2	0	95.8	79.6	130	505.9	2.47	35.6	
Acetone	790	2,600	515.2	280.8	99.7	77.5	159	752.2	0	40	J
Acrylonitrile	540	260	515.2	0	104	64.8	137	535.8	0.0962	24.5	
Benzene	500	31	515.2	0	96.5	52.5	136	502.3	1.03	13.5	
Bromobenzene	510	52	515.2	0	99.6	84.7	114	526.0	2.48	19.6	
Bromochloromethane	520	52	515.2	0	101	83.1	118	542.0	3.97	17	
Bromodichloromethane	590	52	515.2	0	114	60.9	129	577.0	1.68	18.3	
Bromoform	430	52	515.2	0	83.9	77.4	111	423.0	2.17	16.4	
Bromomethane	650	260	515.2	0	126	63.1	189	800.6	21.1	40.4	
Carbon disulfide	490	260	515.2	0	95.3	65.3	113	508.5	3.51	22	
Carbon tetrachloride	500	52	515.2	0	97.1	69.7	116	510.6	2.04	21	
Chlorobenzene	470	52	515.2	0	92.0	80.9	120	473.0	0.218	16	
Chloroethane	580	260	515.2	0	112	79.8	154	637.3	10.0	28.2	
Chloroform	530	52	515.2	0	103	80.7	112	546.6	3.16	14.7	
Chloromethane	440	52	515.2	0	85.4	36.2	126	465.7	5.69	33.6	

Qualifiers:

E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709505-006A-MSD	SampType: MSD	TestCoo	de: SW_8260S	Units: µg/K	g-dry	Prep Da	te:		RunNo: 164	116	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/21/20	07	SeqNo: 260	316	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,2-Dichloroethene	500	52	515.2	0	96.7	65.6	111	511.6	2.65	24.9	
cis-1,3-Dichloropropene	460	52	515.2	0	89.4	76.4	112	457.5	0.673	18.7	
Dibromochloromethane	490	52	515.2	0	94.5	81.3	110	476.6	2.14	19.4	
Dibromomethane	520	52	515.2	0	101	87.9	118	515.7	0.895	15.2	
Dichlorodifluoromethane	380	52	515.2	0	74.6	27.1	121	399.8	3.94	34.1	
Dichloromethane	560	260	515.2	0	108	65	121	569.8	1.92	31.8	
Diethyl ether	570	260	515.2	0	111	88.2	110	571.4	0.271	21.2	S
Ethyl methacrylate	570	52	515.2	0	111	72.1	128	561.1	1.64	18.3	
Ethylbenzene	530	52	515.2	34.52	97.1	82.3	119	534.8	0	15.5	
Ethylene dibromide	510	52	515.2	0	99.0	89.2	115	497.7	2.45	17.6	
Hexachlorobutadiene	580	260	515.2	0	113	69.8	144	571.9	1.96	24	
Hexachloroethane	310	52	515.2	0	59.6	27.8	139	308.6	0.502	15.7	
Isopropyl ether	600	260	515.2	0	117	76.7	117	610.5	0.933	15.4	S
Isopropylbenzene	570	52	515.2	51.52	100	77.3	131	575.5	1.35	15.9	
m,p-Xylene	1,000	100	1,030	43.79	97.3	80.2	120	1,069	2.05	17.3	
Methyl ethyl ketone	510	260	515.2	0	99.0	61	126	448.2	12.9	34	
Methyl Iodide	570	260	515.2	0	110	70	130	547.7	3.33	25	
Methyl isobutyl ketone	620	520	515.2	0	120	59	146	595.1	4.07	33.7	
Methyl tert-butyl ether	1,200	260	1,030	0	115	81.2	116	1,195	0.432	17.5	
Naphthalene	570	260	515.2	79.34	96.2	86.9	133	560.0	2.63	17.1	
n-Butylbenzene	620	52	515.2	112.8	98.4	67.8	125	616.2	0.584	22.4	
n-Propylbenzene	750	52	515.2	246.3	98.5	80.9	125	758.9	0.681	16.5	
o-Xylene	490	52	515.2	0	94.4	71.1	130	487.9	0.317	16	
p-Isopropyltoluene	530	52	515.2	0	104	50.1	163	546.1	2.19	19.2	
sec-Butylbenzene	540	52	515.2	31.43	99.2	71.3	139	544.6	0.379	18.8	
Styrene	500	52	515.2	0	98.0	87.8	123	505.9	0.204	16	
t-Butyl alcohol	120,000	2,100	2,576	0	4,830	70	130	125,800	1.15	17.1	S
tert-Amyl Methyl Ether	520	210	515.2	0	101	78.9	111	529.1	1.87	14.3	
tert-Butyl Ethyl Ether	580	260	515.2	0	112	69.9	132	591.4	2.56	30.6	
tert-Butylbenzene	500	52	515.2	0	97.5	80.7	119	501.8	0.103	19.2	
Tetrachloroethene	570	52	515.2	0	111	42.7	186	582.2	1.61	41.2	

Qualifiers:

E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709505-006A-MSD	SampType: MSD	TestCod	le: SW_8260S	Units: µg/Kg-	lry	Prep Dat	e:		RunNo: 164	116	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	lo: SW8260B			Analysis Dat	e: 9/21/20	07	SeqNo: 260	316	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	490	52	515.2	0	95.7	81.9	119	507.0	2.78	16.2	
trans-1,2-Dichloroethene	580	52	515.2	0	112	75.7	115	584.8	1.42	17.1	
trans-1,3-Dichloropropene	460	52	515.2	0	89.4	75.7	111	457.5	0.673	19.3	
trans-1,4-Dichloro-2-butene	530	52	515.2	0	102	52.9	136	543.0	2.89	17	
Trichloroethene	500	52	515.2	0	96.7	78.2	120	505.9	1.54	19	
Trichlorofluoromethane	820	52	515.2	0	158	70	130	744.5	9.05	25	S
Vinyl chloride	470	41	515.2	0	90.4	37.5	128	490.5	5.17	33.3	
Xylenes, Total	1,500	150	1,546	0	99.2	62.1	143	1,556	1.50	16.5	
Surr: 4-Bromofluorobenzene	3,000		2,576		118	95.9	130		0	25	
Surr: Dibromofluoromethane	2,900		2,576		113	90.4	111		0	25	S
Surr: Toluene-d8	2,800		2,576		110	100	116		0	25	
Sample ID: 10ug/KG LCS 10uL	SampType: LCS	TestCoo	le: SW_8260S	Units: µg/Kg		Prep Dat	e:		RunNo: 164	116	
Client ID: LCSS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Dat	e: 9/22/20	07	SeqNo: 260	333	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	500	50	500.0	0	100	70	130				
1,1,1-Trichloroethane	530	50	500.0	0	106	70	130				
1,1,2,2-Tetrachloroethane	390	50	500.0	0	77.4	70	130				
1,1,2-Trichloro-1,2,2-trifluoroethane	410	50	500.0	0	81.5	70	130				
1,1,2-Trichloroethane	470	50	500.0	0	94.4	70	130				
1,1-Dichloroethane	560	50	500.0	0	112	70	130				
1,1-Dichloroethene	570	50	500.0	0	114	70	130				
1,1-Dichloropropene	470	50	500.0	0	94.1	70	130				
1,2,3-Trichlorobenzene	430	50	500.0	0	86.0	70	130				
1,2,3-Trichloropropane	400	50	500.0	0	79.6	70	130				
1,2,3-Trimethylbenzene	460	50	500.0	0	91.7	70	130				
1,2,4-Trichlorobenzene	440	250	500.0	0	87.8	70	130				
1,2,4-Trimethylbenzene	500	50	500.0	0	99.6	70	130				
1,2-Dibromo-3-chloropropane	400	250	500.0	0	80.2	70	130				
1,2-Dichlorobenzene	480	50	500.0	0	96.5	70	130				

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 10ug/KG LCS 10uL	SampType: LCS	TestCoo	de: SW_8260S	Units: µg/Kg		Prep Da	te:		RunNo: 164	116	
Client ID: LCSS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260	333	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloroethane	600	50	500.0	0	120	70	130				
1,2-Dichloropropane	490	50	500.0	0	98.0	70	130				
1,3,5-Trimethylbenzene	500	50	500.0	0	100	70	130				
1,3-Dichlorobenzene	510	50	500.0	0	102	70	130				
1,3-Dichloropropane	480	50	500.0	0	96.4	70	130				
1,4-Dichlorobenzene	480	50	500.0	0	96.2	70	130				
2,2-Dichloropropane	350	50	500.0	0	70.1	70	130				
2-Chloroethyl vinyl ether	450	500	500.0	0	90.7	70	130				J
2-Chlorotoluene	460	50	500.0	0	92.7	70	130				
2-Hexanone	450	2,500	500.0	0	89.4	70	130				J
2-Methylnaphthalene	440	250	500.0	0	88.0	70	130				
2-Nitropropane	450	200	500.0	0	89.3	70	130				
4-Chlorotoluene	470	50	500.0	0	94.6	70	130				
Acetone	800	2,500	500.0	0	161	70	130				JS
Acrylonitrile	500	250	500.0	0	99.9	70	130				
Benzene	480	30	500.0	0	95.7	70	130				
Bromobenzene	490	50	500.0	0	98.2	70	130				
Bromochloromethane	530	50	500.0	0	106	70	130				
Bromodichloromethane	510	50	500.0	0	102	70	130				
Bromoform	480	50	500.0	0	95.3	70	130				
Bromomethane	1,100	250	500.0	0	217	70	130				S
Carbon disulfide	500	250	500.0	0	101	70	130				
Carbon tetrachloride	540	50	500.0	0	108	70	130				
Chlorobenzene	450	50	500.0	0	89.3	70	130				
Chloroethane	780	250	500.0	0	156	70	130				S
Chloroform	510	50	500.0	0	103	70	130				
Chloromethane	430	50	500.0	0	86.9	70	130				
cis-1,2-Dichloroethene	500	50	500.0	0	99.6	70	130				
cis-1,3-Dichloropropene	440	50	500.0	0	87.1	70	130				
Dibromochloromethane	530	50	500.0	0	106	70	130				
Dibromomethane	510	50	500.0	0	102	70	130				

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 10ug/KG LCS 10uL	SampType: LCS	TestCod	de: SW_8260S	Units: μg/Kg		Prep Da	te:		RunNo: 164	416	
Client ID: LCSS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260	0333	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane	410	50	500.0	0	82.4	70	130				
Dichloromethane	560	250	500.0	0	112	70	130				
Diethyl ether	520	250	500.0	0	105	70	130				
Ethyl methacrylate	450	50	500.0	0	89.6	70	130				
Ethylbenzene	490	50	500.0	0	97.6	70	130				
Ethylene dibromide	490	50	500.0	0	98.9	70	130				
Hexachlorobutadiene	500	250	500.0	0	101	70	130				
Hexachloroethane	310	50	500.0	0	61.2	70	130				S
Isopropyl ether	600	250	500.0	0	119	70	130				
Isopropylbenzene	500	50	500.0	0	100	70	130				
m,p-Xylene	990	100	1,000	0	98.6	70	130				
Methyl ethyl ketone	490	250	500.0	0	98.9	70	130				
Methyl Iodide	550	250	500.0	0	109	70	130				
Methyl isobutyl ketone	470	500	500.0	0	94.0	70	130				J
Methyl tert-butyl ether	1,100	250	1,000	0	112	70	130				
Naphthalene	420	250	500.0	0	83.7	70	130				
n-Butylbenzene	450	50	500.0	0	89.2	70	130				
n-Propylbenzene	480	50	500.0	0	95.7	70	130				
o-Xylene	460	50	500.0	0	92.5	70	130				
p-Isopropyltoluene	500	50	500.0	0	99.0	70	130				
sec-Butylbenzene	480	50	500.0	0	96.2	70	130				
Styrene	490	50	500.0	0	98.1	70	130				
t-Butyl alcohol	ND	2,000	2,500	0	0	70	130				S
tert-Amyl Methyl Ether	490	200	500.0	0	98.1	70	130				
tert-Butyl Ethyl Ether	610	250	500.0	0	122	70	130				
tert-Butylbenzene	490	50	500.0	0	97.2	70	130				
Tetrachloroethene	870	50	500.0	0	175	70	130				S
Toluene	490	50	500.0	0	98.1	70	130				
trans-1,2-Dichloroethene	560	50	500.0	0	113	70	130				
trans-1,3-Dichloropropene	440	50	500.0	0	87.1	70	130				
trans-1,4-Dichloro-2-butene	430	50	500.0	0	85.8	70	130				

Qualifiers:

E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Torch Lake SA - 20405.016.002.0274.00 **Project:**

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 10ug/KG LCS 10uL	SampType: LCS	TestCo	de: SW_8260S	Units: µg/Kg		Prep Da	te:		RunNo: 16 4	116	
Client ID: LCSS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260	0333	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene	560	50	500.0	0	112	70	130				
Trichlorofluoromethane	200	50	500.0	0	39.0	70	130				S
Vinyl chloride	500	40	500.0	0	99.3	70	130				
Xylenes, Total	1,400	150	1,500	0	96.6	70	130				
Surr: 4-Bromofluorobenzene	2,900		2,500		115	90	115				S
Surr: Dibromofluoromethane	2,800		2,500		110	88.4	108				S
Surr: Toluene-d8	2,700		2,500		109	90	112				
Sample ID: MLKB 1mLJW07100	SampType: MBLK	TestCo	de: SW_8260S	Units: µg/Kg		Prep Da	te:		RunNo: 164	116	
Client ID: PBS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260	0334	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	50									
1,1,1-Trichloroethane	ND	50									
1,1,2,2-Tetrachloroethane	ND	50									
$1, 1, 2\hbox{-}Trichloro\hbox{-}1, 2, 2\hbox{-}trifluoroethane$	ND	50									
1,1,2-Trichloroethane	ND	50									
1,1-Dichloroethane	ND	50									
1,1-Dichloroethene	ND	50									
1,1-Dichloropropene	ND	50									
1,2,3-Trichlorobenzene	ND	50									
1,2,3-Trichloropropane	ND	50									
1,2,3-Trimethylbenzene	ND	50									
1,2,4-Trichlorobenzene	ND	250									
1,2,4-Trimethylbenzene	ND	50									
1,2-Dibromo-3-chloropropane	ND	250									
1,2-Dichlorobenzene	ND	50									
1,2-Dichloroethane	ND	50									
1,2-Dichloropropane	ND	50									
1,3,5-Trimethylbenzene	ND	50									
1,3-Dichlorobenzene	ND	50									

M Manual Integration used to determine area response

RL Reporting Detection Limit

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: MLKB 1mLJW07100	SampType: MBLK	TestCoo	de: SW_8260 S	Units: μg/Kg		Prep Da	te:		RunNo: 164	116	
Client ID: PBS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	007	SeqNo: 260	0334	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3-Dichloropropane	ND	50									
1,4-Dichlorobenzene	ND	50									
2,2-Dichloropropane	ND	50									
2-Chloroethyl vinyl ether	ND	500									
2-Chlorotoluene	ND	50									
2-Hexanone	ND	2,500									
2-Methylnaphthalene	ND	250									
2-Nitropropane	ND	200									
4-Chlorotoluene	ND	50									
Acetone	320	2,500									J
Acrylonitrile	ND	250									
Benzene	ND	30									
Bromobenzene	ND	50									
Bromochloromethane	ND	50									
Bromodichloromethane	ND	50									
Bromoform	ND	50									
Bromomethane	ND	250									
Carbon disulfide	ND	250									
Carbon tetrachloride	ND	50									
Chlorobenzene	ND	50									
Chloroethane	ND	250									
Chloroform	ND	50									
Chloromethane	ND	50									
cis-1,2-Dichloroethene	ND	50									
cis-1,3-Dichloropropene	ND	50									
Dibromochloromethane	ND	50									
Dibromomethane	ND	50									
Dichlorodifluoromethane	ND	50									
Dichloromethane	49	250									J
Diethyl ether	ND	250									
Ethyl methacrylate	ND	50									

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: MLKB 1mLJW07100	SampType: MBLK	TestCod	le: SW_8260S	Units: μg/Kg		Prep Da	te:		RunNo: 16 4	116	
Client ID: PBS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260	334	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Ethylbenzene	ND	50									
Ethylene dibromide	ND	50									
Hexachlorobutadiene	ND	250									
Hexachloroethane	ND	50									
Isopropyl ether	ND	250									
Isopropylbenzene	ND	50									
m,p-Xylene	ND	100									
Methyl ethyl ketone	ND	250									
Methyl Iodide	ND	250									
Methyl isobutyl ketone	ND	500									
Methyl tert-butyl ether	ND	250									
Naphthalene	ND	250									
n-Butylbenzene	ND	50									
n-Propylbenzene	ND	50									
o-Xylene	ND	50									
p-lsopropyltoluene	ND	50									
sec-Butylbenzene	ND	50									
Styrene	ND	50									
t-Butyl alcohol	ND	2,000									
tert-Amyl Methyl Ether	ND	200									
tert-Butyl Ethyl Ether	ND	250									
tert-Butylbenzene	ND	50									
Tetrachloroethene	ND	50									
Toluene	ND	50									
trans-1,2-Dichloroethene	ND	50									
trans-1,3-Dichloropropene	ND	50									
trans-1,4-Dichloro-2-butene	ND	50									
Trichloroethene	ND	50									
Trichlorofluoromethane	ND	50									
Vinyl chloride	ND	40									
Xylenes, Total	ND	150									

Qualifiers: E Value

Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: MLKB 1mLJW07100	SampType: MBLK	TestCod	de: SW_8260S	Units: μg/K	9	Prep Da	te:		RunNo: 164	416	
Client ID: PBS	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260	0334	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	2,900		2,500		115	90	115				S
Surr: Dibromofluoromethane	2,800		2,500		111	88.4	108				S
Surr: Toluene-d8	2,700		2,500		109	90	112				
1,4-Dioxane	ND	25,000									
Sample ID: 0709450-004A-MS	SampType: MS	TestCo	de: SW_8260S	Units: μg/K	g-dry	Prep Da	te:		RunNo: 164	416	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260	0343	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	470	50	495.5	0	95.1	81.7	109				
1,1,1-Trichloroethane	550	50	495.5	0	111	73.7	114				
1,1,2,2-Tetrachloroethane	450	50	495.5	0	90.6	72.6	139				
1,1,2-Trichloro-1,2,2-trifluoroethane	410	50	495.5	0	83.4	62.1	118				
1,1,2-Trichloroethane	490	50	495.5	0	99.7	68.8	130				
1,1-Dichloroethane	590	50	495.5	0	120	79.3	111				S
1,1-Dichloroethene	590	50	495.5	0	119	67.3	116				S
1,1-Dichloropropene	500	50	495.5	0	102	32	140				
1,2,3-Trichlorobenzene	450	50	495.5	0	89.9	87.3	130				
1,2,3-Trichloropropane	410	50	495.5	0	83.6	68.8	112				
1,2,3-Trimethylbenzene	470	50	495.5	0	94.2	51.6	132				
1,2,4-Trichlorobenzene	460	250	495.5	0	93.6	87.8	130				
1,2,4-Trimethylbenzene	510	50	495.5	0	102	76.2	131				
1,2-Dibromo-3-chloropropane	390	250	495.5	0	78.6	45.6	162				
1,2-Dichlorobenzene	490	50	495.5	0	99.5	85.9	113				
1,2-Dichloroethane	640	50	495.5	0	130	85.8	116				S
1,2-Dichloropropane	500	50	495.5	0	101	83.6	110				
1,3,5-Trimethylbenzene	500	50	495.5	0	102	44.6	174				
1,3-Dichlorobenzene	530	50	495.5	0	108	84.7	119				
1,3-Dichloropropane	500	50	495.5	0	101	86.2	113				
1,4-Dichlorobenzene	490	50	495.5	0	99.1	85.2	111				
2,2-Dichloropropane	330	50	495.5	0	67.0	40	108				

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709450-004A-MS	SampType: MS	TestCod	de: SW_8260S	Units: µg/K	g-dry	Prep Da	te:		RunNo: 164	116	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260	343	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Chloroethyl vinyl ether	480	500	495.5	0	97.6	82	114				J
2-Chlorotoluene	480	50	495.5	0	96.6	75.7	126				
2-Hexanone	500	2,500	495.5	0	100	51.3	170				J
2-Methylnaphthalene	370	250	495.5	0	74.4	75.2	127				S
2-Nitropropane	450	200	495.5	0	90.2	70	130				
4-Chlorotoluene	490	50	495.5	0	98.0	79.6	130				
Acetone	670	2,500	495.5	0	135	77.5	159				J
Acrylonitrile	530	250	495.5	0	107	64.8	137				
Benzene	490	30	495.5	0	98.0	52.5	136				
Bromobenzene	500	50	495.5	0	101	84.7	114				
Bromochloromethane	580	50	495.5	0	116	83.1	118				
Bromodichloromethane	490	50	495.5	0	99.3	60.9	129				
Bromoform	430	50	495.5	0	86.1	77.4	111				
Bromomethane	1,200	250	495.5	0	245	63.1	189				S
Carbon disulfide	490	250	495.5	0	99.3	65.3	113				
Carbon tetrachloride	530	50	495.5	0	107	69.7	116				
Chlorobenzene	460	50	495.5	0	93.1	80.9	120				
Chloroethane	790	250	495.5	0	160	79.8	154				S
Chloroform	520	50	495.5	0	106	80.7	112				
Chloromethane	440	50	495.5	0	88.3	36.2	126				
cis-1,2-Dichloroethene	490	50	495.5	0	99.1	65.6	111				
cis-1,3-Dichloropropene	430	50	495.5	0	85.9	76.4	112				
Dibromochloromethane	490	50	495.5	0	98.4	81.3	110				
Dibromomethane	510	50	495.5	0	104	87.9	118				
Dichlorodifluoromethane	390	50	495.5	0	78.5	27.1	121				
Dichloromethane	570	250	495.5	0	115	65	121				
Diethyl ether	570	250	495.5	0	116	88.2	110				S
Ethyl methacrylate	480	50	495.5	0	96.6	72.1	128				
Ethylbenzene	490	50	495.5	0	99.4	82.3	119				
Ethylene dibromide	500	50	495.5	0	99.9	89.2	115				
Hexachlorobutadiene	490	250	495.5	0	98.9	69.8	144				

Qualifiers:

E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709450-004A-MS	SampType: MS	TestCoo	de: SW_8260S	Units: µg/k	g-dry	Prep Da	te:		RunNo: 164	116	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260	343	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachloroethane	270	50	495.5	0	54.7	27.8	139				
Isopropyl ether	620	250	495.5	0	126	76.7	117				S
Isopropylbenzene	510	50	495.5	0	104	77.3	131				
m,p-Xylene	1,000	99	991.0	0	101	80.2	120				
Methyl ethyl ketone	600	250	495.5	0	122	61	126				
Methyl Iodide	520	250	495.5	0	106	70	130				
Methyl isobutyl ketone	510	500	495.5	0	103	59	146				
Methyl tert-butyl ether	1,200	250	991.0	0	123	81.2	116				S
Naphthalene	450	250	495.5	0	91.0	86.9	133				
n-Butylbenzene	460	50	495.5	0	92.6	67.8	125				
n-Propylbenzene	490	50	495.5	0	99.1	80.9	125				
o-Xylene	470	50	495.5	0	95.7	71.1	130				
p-Isopropyltoluene	510	50	495.5	0	103	50.1	163				
sec-Butylbenzene	490	50	495.5	0	98.1	71.3	139				
Styrene	500	50	495.5	0	102	87.8	123				
t-Butyl alcohol	5,000	2,000	2,478	0	203	70	130				S
tert-Amyl Methyl Ether	530	200	495.5	0	106	78.9	111				
tert-Butyl Ethyl Ether	600	250	495.5	0	122	69.9	132				
tert-Butylbenzene	500	50	495.5	0	100	80.7	119				
Tetrachloroethene	850	50	495.5	0	173	42.7	186				
Toluene	490	50	495.5	0	99.6	81.9	119				
trans-1,2-Dichloroethene	600	50	495.5	0	120	75.7	115				S
trans-1,3-Dichloropropene	430	50	495.5	0	85.9	75.7	111				
trans-1,4-Dichloro-2-butene	460	50	495.5	0	93.3	52.9	136				
Trichloroethene	520	50	495.5	0	105	78.2	120				
Trichlorofluoromethane	200	50	495.5	0	40.4	70	130				S
Vinyl chloride	490	40	495.5	0	98.7	37.5	128				
Xylenes, Total	1,500	150	1,487	0	99.5	62.1	143				
Surr: 4-Bromofluorobenzene	2,900		2,478		116	95.9	130				
Surr: Dibromofluoromethane	2,800		2,478		113	90.4	111				S
Surr: Toluene-d8	2,700		2,478		109	100	116				

Qualifiers:

E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709450-004A-MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: R16416		de: SW_8260S	Units: μg/K	g-dry	Prep Date		07	RunNo: 16 4 SeqNo: 26 0		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	460	50	495.5	0	92.3	81.7	109	471.2	2.99	15.7	
1,1,1-Trichloroethane	500	50	495.5	0	99.9	73.7	114	550.0	10.5	16.8	
1,1,2,2-Tetrachloroethane	420	50	495.5	0	84.0	72.6	139	448.9	7.56	16.7	
1,1,2-Trichloro-1,2,2-trifluoroethane	380	50	495.5	0	76.0	62.1	118	413.3	9.28	25.7	
1,1,2-Trichloroethane	460	50	495.5	0	93.7	68.8	130	494.0	6.20	15.9	
1.1-Dichloroethane	550	50	495.5	0	112	79.3	111	592.6	7.01	16.6	S
1.1-Dichloroethene	550	50	495.5	0	111	67.3	116	591.7	7.65	20	-
1,1-Dichloropropene	450	50	495.5	0	91.3	32	140	503.0	10.6	18.5	
1,2,3-Trichlorobenzene	420	50	495.5	0	84.2	87.3	130	445.5	6.55	18.8	s
1,2,3-Trichloropropane	380	50	495.5	0	76.8	68.8	112	414.3	8.48	19.4	-
1,2,3-Trimethylbenzene	440	50	495.5	0	88.1	51.6	132	466.8	6.69	16.2	
1,2,4-Trichlorobenzene	430	250	495.5	0	87.0	87.8	130	463.8	7.31	23	S
1,2,4-Trimethylbenzene	460	50	495.5	0	92.9	76.2	131	506.4	9.53	20.6	
1,2-Dibromo-3-chloropropane	380	250	495.5	0	77.2	45.6	162	389.5	1.80	48.7	
1,2-Dichlorobenzene	460	50	495.5	0	92.0	85.9	113	493.0	7.83	17.5	
1,2-Dichloroethane	610	50	495.5	0	122	85.8	116	642.2	5.71	13.9	S
1,2-Dichloropropane	450	50	495.5	0	91.5	83.6	110	500.5	9.87	18.1	
1,3,5-Trimethylbenzene	470	50	495.5	0	94.2	44.6	174	503.0	7.46	19.2	
1,3-Dichlorobenzene	490	50	495.5	0	98.6	84.7	119	533.2	8.73	22.5	
1,3-Dichloropropane	470	50	495.5	0	94.7	86.2	113	499.0	6.14	17.2	
1,4-Dichlorobenzene	460	50	495.5	0	92.1	85.2	111	491.1	7.32	16.2	
2,2-Dichloropropane	310	50	495.5	0	62.6	40	108	332.0	6.79	16	
2-Chloroethyl vinyl ether	450	500	495.5	0	91.3	82	114	483.6	0	18.4	J
2-Chlorotoluene	440	50	495.5	0	89.6	75.7	126	478.7	7.52	17.2	
2-Hexanone	450	2,500	495.5	0	91.1	51.3	170	496.0	0	40	J
2-Methylnaphthalene	380	250	495.5	0	77.1	75.2	127	368.7	3.56	26.8	
2-Nitropropane	ND	200	3,469	0	0	70	130	447.0	0	56.4	S
4-Chlorotoluene	450	50	495.5	0	90.5	79.6	130	485.6	7.96	35.6	
Acetone	680	2,500	495.5	0	137	77.5	159	670.4	0	40	J
Acrylonitrile	500	250	495.5	0	100	64.8	137	527.7	6.20	24.5	
Benzene	460	30	495.5	0	93.1	52.5	136	485.6	5.13	13.5	

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709450-004A-MSD	SampType: MSD	TestCoo	le: SW_8260S	Units: µg/K	g-dry	Prep Da	te:		RunNo: 164	116	
Client ID: ZZZZZZ	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260)344	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromobenzene	460	50	495.5	0	93.0	84.7	114	502.0	8.54	19.6	
Bromochloromethane	530	50	495.5	0	107	83.1	118	576.3	8.05	17	
Bromodichloromethane	460	50	495.5	0	93.5	60.9	129	492.1	6.02	18.3	
Bromoform	430	50	495.5	0	86.3	77.4	111	426.6	0.232	16.4	
Bromomethane	1,000	250	495.5	0	204	63.1	189	1,215	18.3	40.4	S
Carbon disulfide	450	250	495.5	0	91.5	65.3	113	492.1	8.18	22	
Carbon tetrachloride	490	50	495.5	0	97.9	69.7	116	532.2	9.25	21	
Chlorobenzene	440	50	495.5	0	89.6	80.9	120	461.3	3.83	16	
Chloroethane	760	250	495.5	0	154	79.8	154	794.3	3.81	28.2	S
Chloroform	480	50	495.5	0	97.5	80.7	112	524.8	8.26	14.7	
Chloromethane	400	50	495.5	0	80.6	36.2	126	437.5	9.12	33.6	
cis-1,2-Dichloroethene	460	50	495.5	0	92.3	65.6	111	491.1	7.11	24.9	
cis-1,3-Dichloropropene	390	50	495.5	0	79.5	76.4	112	425.7	7.74	18.7	
Dibromochloromethane	470	50	495.5	0	94.5	81.3	110	487.6	4.04	19.4	
Dibromomethane	470	50	495.5	0	95.6	87.9	118	513.9	8.13	15.2	
Dichlorodifluoromethane	340	50	495.5	0	69.6	27.1	121	389.0	12.0	34.1	
Dichloromethane	530	250	495.5	0	107	65	121	568.9	7.03	31.8	
Diethyl ether	540	250	495.5	0	109	88.2	110	572.3	6.16	21.2	
Ethyl methacrylate	440	50	495.5	0	89.2	72.1	128	478.7	7.97	18.3	
Ethylbenzene	460	50	495.5	0	93.4	82.3	119	492.6	6.22	15.5	
Ethylene dibromide	470	50	495.5	0	95.2	89.2	115	495.0	4.82	17.6	
Hexachlorobutadiene	470	250	495.5	0	94.9	69.8	144	490.1	4.13	24	
Hexachloroethane	260	50	495.5	0	51.7	27.8	139	271.1	5.64	15.7	
Isopropyl ether	580	250	495.5	0	117	76.7	117	621.9	7.10	15.4	
Isopropylbenzene	470	50	495.5	0	94.2	77.3	131	513.4	9.50	15.9	
m,p-Xylene	940	99	991.0	0	94.5	80.2	120	1,005	7.09	17.3	
Methyl ethyl ketone	550	250	495.5	0	111	61	126	602.6	8.84	34	
Methyl lodide	530	250	495.5	0	107	70	130	522.8	1.60	25	
Methyl isobutyl ketone	480	500	495.5	0	96.6	59	146	508.9	0	33.7	J
Methyl tert-butyl ether	1,200	250	991.0	0	117	81.2	116	1,218	5.17	17.5	S
Naphthalene	430	250	495.5	0	87.5	86.9	133	450.9	3.92	17.1	

Qualifiers:

E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8260S

Sample ID: 0709450-004A-MSD	SampType: MSD	TestCoo	de: SW_8260S	Units: µg/l	Kg-dry	Prep Da	te:		RunNo: 164	116	_
Client ID: ZZZZZZ	Batch ID: R16416	TestN	lo: SW8260B			Analysis Da	te: 9/22/20	07	SeqNo: 260)344	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
n-Butylbenzene	410	50	495.5	0	83.4	67.8	125	458.9	10.5	22.4	
n-Propylbenzene	450	50	495.5	0	91.5	80.9	125	491.1	7.97	16.5	
o-Xylene	440	50	495.5	0	89.7	71.1	130	474.2	6.47	16	
p-Isopropyltoluene	470	50	495.5	0	94.1	50.1	163	509.4	8.84	19.2	
sec-Butylbenzene	460	50	495.5	0	92.0	71.3	139	486.1	6.42	18.8	
Styrene	470	50	495.5	0	94.2	87.8	123	504.9	7.85	16	
t-Butyl alcohol	5,200	2,000	2,478	0	209	70	130	5,024	3.21	17.1	S
tert-Amyl Methyl Ether	490	200	495.5	0	98.9	78.9	111	525.8	7.02	14.3	
tert-Butyl Ethyl Ether	560	250	495.5	0	113	69.9	132	603.1	7.41	30.6	
tert-Butylbenzene	450	50	495.5	0	91.5	80.7	119	496.0	8.98	19.2	
Tetrachloroethene	780	50	495.5	0	157	42.7	186	854.8	9.28	41.2	
Toluene	460	50	495.5	0	92.9	81.9	119	493.5	6.96	16.2	
trans-1,2-Dichloroethene	560	50	495.5	0	113	75.7	115	595.6	6.26	17.1	
trans-1,3-Dichloropropene	390	50	495.5	0	79.5	75.7	111	425.7	7.74	19.3	
trans-1,4-Dichloro-2-butene	430	50	495.5	0	87.1	52.9	136	462.3	6.87	17	
Trichloroethene	490	50	495.5	0	98.2	78.2	120	520.3	6.69	19	
Trichlorofluoromethane	200	50	495.5	0	39.7	70	130	200.2	1.75	25	S
Vinyl chloride	450	40	495.5	0	90.4	37.5	128	489.1	8.78	33.3	
Xylenes, Total	1,400	150	1,487	0	92.9	62.1	143	1,480	6.89	16.5	
Surr: 4-Bromofluorobenzene	2,900		2,478		116	95.9	130		0	25	
Surr: Dibromofluoromethane	2,800		2,478		114	90.4	111		0	25	S
Surr: Toluene-d8	2,700		2,478		109	100	116		0	25	

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

M Manual Integration used to determine area response

RL Reporting Detection Limit

QC SUMMARY REPORT

TestCode: SW_8270S

R RPD outside accepted recovery limits

Page 67 of 70

Sample ID: LCS-8386	SampType: LCS	TestCod	le: SW_8270S	Units: µg/Kg		Prep Date	e: 9/17/20 0	07	RunNo: 162	.87	
Client ID: LCSS	Batch ID: 8386	TestN	o: SW8270C			Analysis Date	e: 9/18/20 0	07	SeqNo: 257	'834	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	620	160	833.3	0	74.2	50	130				
Acenaphthene	670	160	833.3	0	80.1	50	130				
Acenaphthylene	640	160	833.3	0	76.7	50	130				
Anthracene	650	160	833.3	0	78.4	50	130				
Benzo(a)anthracene	660	160	833.3	0	79.7	50	130				
Benzo(a)pyrene	680	160	833.3	0	81.9	50	130				
Benzo(b)fluoranthene	710	160	833.3	0	85.5	50	130				
Benzo(g,h,i)perylene	600	160	833.3	0	71.5	50	130				
Benzo(k)fluoranthene	650	160	833.3	0	77.9	50	130				
Chrysene	680	160	833.3	0	81.5	50	130				
Dibenz(a,h)anthracene	630	160	833.3	0	75.7	50	130				
Fluoranthene	620	160	833.3	0	74.4	50	130				
Fluorene	670	160	833.3	0	79.9	50	130				
Indeno(1,2,3-cd)pyrene	630	160	833.3	0	75.8	50	130				
Naphthalene	610	160	833.3	0	73.8	50	130				
Phenanthrene	660	160	833.3	0	79.3	50	130				
Pyrene	710	160	833.3	0	84.7	50	130				
Surr: 2,4,6-Tribromophenol	1,400		1,333		102	50	130				
Surr: 2-Fluorobiphenyl	840		1,333		63.1	50	130				
Surr: 2-Fluorophenol	1,100		1,333		84.0	50	130				
Surr: Nitrobenzene-d5	810		1,333		60.8	50	130				
Surr: Phenol-d5	1,100		1,333		80.2	50	130				
Surr: Terphenyl-d14	920		1,333		69.0	50	130				
Sample ID: MB-8386	SampType: MBLK	TestCod	le: SW_8270S	Units: µg/Kg		Prep Date	e: 9/17/20		RunNo: 162		·
Client ID: PBS	Batch ID: 8386	TestN	o: SW8270C			Analysis Date	e: 9/18/20 0	07	SeqNo: 257	'836	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	ND	160									
Acenaphthene	ND	160									
Acenaphthylene	ND	160									

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

RL Reporting Detection Limit

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

Page 68 of 70

TestCode: SW_8270S

Sample ID: MB-8386	SampType: MBLK	TestCoo	le: SW_8270S	Units: µg/Kg		Prep Dat	te: 9/17/20	07	RunNo: 162	287	
Client ID: PBS	Batch ID: 8386	TestN	lo: SW8270C			Analysis Da	te: 9/18/20	07	SeqNo: 257	'836	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Anthracene	ND	160									
Benzo(a)anthracene	ND	160									
Benzo(a)pyrene	ND	160									
Benzo(b)fluoranthene	ND	160									
Benzo(g,h,i)perylene	ND	160									
Benzo(k)fluoranthene	ND	160									
Chrysene	ND	160									
Dibenz(a,h)anthracene	ND	160									
Fluoranthene	ND	160									
Fluorene	ND	160									
Indeno(1,2,3-cd)pyrene	ND	160									
Naphthalene	ND	160									
Phenanthrene	ND	160									
Pyrene	ND	160									
Surr: 2,4,6-Tribromophenol	1,200		1,667		72.7	50	130				
Surr: 2-Fluorobiphenyl	890		1,667		53.4	50	130				
Surr: 2-Fluorophenol	1,200		1,667		69.0	50	130				
Surr: Nitrobenzene-d5	780		1,667		47.0	50	130				S
Surr: Phenol-d5	1,100		1,667		67.1	50	130				
Surr: Terphenyl-d14	1,100		1,667		63.8	50	130				
Sample ID: 0709397-001B-MS	SampType: MS	TestCoo	le: SW_8270S	Units: μg/Kg-	dry	Prep Dat	te: 9/17/20	07	RunNo: 162	287	
Client ID: ZZZZZZ	Batch ID: 8386	TestN	lo: SW8270C			Analysis Dat	te: 9/18/20	07	SeqNo: 257	'839	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	890	180	950.4	0	94.0	50	130				
Acenaphthene	810	180	950.4	0	85.2	50	130				
Acenaphthylene	910	180	950.4	0	95.4	50	130				
Anthracene	870	180	950.4	0	91.9	50	130				
Benzo(a)anthracene	830	180	950.4	0	87.4	50	130				
Benzo(a)pyrene	860	180	950.4	0	90.5	50	130				
Qualifiers: E Value above	quantitation range		H Holdin	g times for preparation	or analysis	exceeded	J .	Analyte detected be	elow quantitation	lin	
M Manual Integ	gration used to determine area re	sponse	ND Not Do	etected at the Reporting	Limit		R	RPD outside accep	ted recovery limi	ts	

Spike Recovery outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8270S

Sample ID: 0709397-001B-MS	SampType: MS	TestCoo	de: SW_8270S	Units: µg/l	(g-dry	Prep Da	te: 9/17/20	07	RunNo: 162	287	
Client ID: ZZZZZZ	Batch ID: 8386	TestN	lo: SW8270C			Analysis Da	te: 9/18/20	07	SeqNo: 257	7839	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(b)fluoranthene	840	180	950.4	0	87.9	50	130				
Benzo(g,h,i)perylene	800	180	950.4	0	84.2	50	130				
Benzo(k)fluoranthene	900	180	950.4	0	94.7	50	130				
Chrysene	850	180	950.4	0	89.9	50	130				
Dibenz(a,h)anthracene	800	180	950.4	0	84.1	50	130				
Fluoranthene	1,000	180	950.4	0	106	50	130				
Fluorene	950	180	950.4	0	100	50	130				
Indeno(1,2,3-cd)pyrene	830	180	950.4	0	87.4	50	130				
Naphthalene	1,500	180	950.4	448.6	108	50	130				
Phenanthrene	1,100	180	950.4	0	119	50	130				
Pyrene	1,000	180	950.4	0	108	50	130				
Surr: 2,4,6-Tribromophenol	2,000		1,521		134	50	130				S
Surr: 2-Fluorobiphenyl	1,000		1,521		67.6	50	130				
Surr: 2-Fluorophenol	1,400		1,521		90.4	50	130				
Surr: Nitrobenzene-d5	1,000		1,521		66.0	50	130				
Surr: Phenol-d5	1,300		1,521		86.3	50	130				
Surr: Terphenyl-d14	1,200		1,521		76.7	50	130				
Sample ID: 0709397-001B-MSD	SampType: MSD	TestCoo	de: SW_8270S	Units: µg/l	(g-dry	Prep Da	te: 9/17/20	07	RunNo: 162	287	
Client ID: ZZZZZZ	Batch ID: 8386	TestN	lo: SW8270C			Analysis Da	te: 9/18/20	07	SeqNo: 257	7900	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	670	180	950.4	0	70.1	50	130	893.0	29.1	25	R
Acenaphthene	760	180	950.4	0	80.4	50	130	809.7	5.75	25	
Acenaphthylene	750	180	950.4	0	79.2	50	130	907.1	18.6	25	
Anthracene	810	180	950.4	0	84.9	50	130	873.6	7.92	25	
Benzo(a)anthracene	770	180	950.4	0	80.8	50	130	830.3	7.75	25	
Benzo(a)pyrene	770	180	950.4	0	81.5	50	130	859.9	10.4	25	
Benzo(b)fluoranthene	820	180	950.4	0	86.0	50	130	835.6	2.25	25	
Benzo(g,h,i)perylene	740	180	950.4	0	77.4	50	130	800.6	8.51	25	
Benzo(k)fluoranthene	800	180	950.4	0	84.4	50	130	900.2	11.5	25	
Ovolifiora E Value above a	uantitation range		U Holdin	a times for prepare	1	1 1	т .	Analysta datactad be	1 22 22	1.	

Qualifiers:

Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Work Order: 0709373

Project: Torch Lake SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8270S

Sample ID: 0709397-001B-MSD	SampType: MSD	TestCod	de: SW_8270S	Units: µg/K	g-dry	Prep Da	te: 9/17/20	07	RunNo: 162	287	
Client ID: ZZZZZZ	Batch ID: 8386	TestN	lo: SW8270C			Analysis Da	te: 9/18/20	07	SeqNo: 257	7900	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chrysene	780	180	950.4	0	81.7	50	130	854.6	9.60	25	
Dibenz(a,h)anthracene	750	180	950.4	0	79.0	50	130	799.5	6.23	25	
Fluoranthene	760	180	950.4	0	79.8	50	130	1,003	27.8	25	R
Fluorene	800	180	950.4	0	84.6	50	130	952.7	16.9	25	
Indeno(1,2,3-cd)pyrene	750	180	950.4	0	79.4	50	130	831.0	9.64	25	
Naphthalene	700	180	950.4	448.6	26.9	50	130	1,472	70.6	25	SR
Phenanthrene	810	180	950.4	0	85.2	50	130	1,128	32.8	25	R
Pyrene	890	180	950.4	0	93.3	50	130	1,031	15.0	25	
Surr: 2,4,6-Tribromophenol	1,900		1,521		124	50	130		0	25	
Surr: 2-Fluorobiphenyl	980		1,521		64.4	50	130		0	25	
Surr: 2-Fluorophenol	1,300		1,521		84.2	50	130		0	25	
Surr: Nitrobenzene-d5	910		1,521		59.7	50	130		0	25	
Surr: Phenol-d5	1,300		1,521		83.1	50	130		0	25	
Surr: Terphenyl-d14	1,300		1,521		82.6	50	130		0	25	

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Order No.: 0709387

September 25, 2007

Dan Capone
Weston Solutions of Illinois, Inc.
750 E. Bunker Court
Suite 500
Vernon Hills, IL 60061

TEL: (847) 918-4112 FAX (847) 918-4055

RE: Torch Lake AOC SA - 20405.016.002.0274

Dear Dan Capone:

RTI Laboratories received 14 sample(s) on 9/14/2007 for the analyses presented in the following report.

There were no problems with the analytical events associated with this report unless noted in the Case Narrative. Analytical results designated with a "J" qualifier are estimated and represent a detection above the Method Detection Limit (MDL) and less than the Reporting Limit (PQL). These analytes are not reviewed nor narrated as to whether they are laboratory artifacts.

Quality control data is within laboratory defined or method specified acceptance limits except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Robert Lynch

Manager, Environmental Services

Case Narrative

WO#: **0709387**Date: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake AOC SA - 20405.016.002.0274.00

This report in its entirety consists of the documents listed below. All documents contain the RTI Work Order Number assigned to this report.

- 1. Paginated Report including: Case Narrative, Analytical Results and Applicable Quality Control Summary Reports.
 - 2. A Cover Letter that immediately precedes the Paginated Report.
 - 3. Paginated copies of the Chain of Custody Documents supplied with this sample set.

Concentrations reported with a J flag in the Qual field are values below the reporting limit (RL) but greater than the established method detection limit (MDL). There is greater uncertainty associated with these results and data should be considered as estimated.

Concentrations reported with an E flag in the Qual field are values that exceed the upper quantification range. There is greater uncertainty associated with these results and data should be considered as estimated.

Any comments or problems with the analytical events associated with this report are noted below.

31628 Glendale St. Livonia, Michigan 48150

TEL: 734.422.8000 FAX: 734.422.5342 Website: www.rtilab.com **Analytical Report**

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/11/2007 10:13:00 AM

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-001 Matrix: SOIL Lab ID:

Client Sample ID Traprock-8

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1221	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1232	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1242	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1248	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1254	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1260	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1262	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Total PCBs	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Surr: Decachlorobiphenyl	107	70-130		%REC	1	9/17/2007 5:11:02 PM
Surr: Tetrachloro-m-xylene	94.9	70-130		%REC	1	9/17/2007 5:11:02 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	9,800,000	100,000		μg/Kg-dry	1000	9/24/2007 12:17:21 PM
Arsenic	4,600	1,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Beryllium	590	5,100	J	μg/Kg-dry	100	9/21/2007 2:42:40 PM
Chromium	4,500	10,000	J	μg/Kg-dry	100	9/21/2007 2:42:40 PM
Cobalt	9,400	5,100		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Copper	360,000	10,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Lead	48,000	10,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Lithium	7,300	1,000		μg/Kg-dry	10	9/24/2007 6:02:52 PM
Manganese	390,000	10,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Nickel	30,000	10,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Silver	1,700	87		μg/Kg-dry	10	9/19/2007 7:36:34 PM
Strontium	ND	250,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Zinc	95,000	10,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	52	17		μg/Kg-dry	1	9/18/2007 3:24:18 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 2 of 46

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Analytical Report

(consolidated)

WO#: **0709387**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc.

Collection Date: 9/11/2007 10:13:00 AM

Project: Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID: 0709387-001 **Matrix:** SOIL

Client Sample ID Traprock-8

Analyses	Result	RL Qual	Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	12	1.0	wt%	1	9/17/2007 8:30:00 AM

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

31628 Glendale St. Livonia, Michigan 48150 FAX: 734.422.5342

TEL: 734.422.8000

Website: www.rtilab.com

Analytical Report

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/11/2007 10:49:00 AM

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-002 Matrix: SOIL Lab ID:

Client Sample ID Traprock B-12

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1221	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1232	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1242	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1248	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1254	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1260	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1262	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Total PCBs	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Surr: Decachlorobiphenyl	111	70-130		%REC	1	9/17/2007 5:51:26 PM
Surr: Tetrachloro-m-xylene	101	70-130		%REC	1	9/17/2007 5:51:26 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	13,000,000	110,000		μg/Kg-dry	1000	9/24/2007 12:24:31 PM
Arsenic	4,200	1,100		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Beryllium	1,400	5,300	J	μg/Kg-dry	100	9/21/2007 2:45:05 PM
Chromium	ND	11,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Cobalt	440	5,300	J	μg/Kg-dry	100	9/21/2007 2:45:05 PM
Copper	47,000	11,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Lead	17,000	11,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Lithium	11,000	1,100		μg/Kg-dry	10	9/24/2007 6:04:38 PM
Manganese	17,000	11,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Nickel	1,200	11,000	J	μg/Kg-dry	100	9/21/2007 2:45:05 PM
Silver	180	64		μg/Kg-dry	10	9/19/2007 7:43:03 PM
Strontium	440,000	270,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Zinc	14,000	11,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	4.7	14	J	μg/Kg-dry	1	9/18/2007 3:34:19 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 4 of 46

Analytical Report (consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/11/2007 10:49:00 AM

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-002 Matrix: SOIL Lab ID:

Client Sample ID Traprock B-12

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	5.9	1.0	wt%	1	9/17/2007 8:30:00 AM

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

31628 Glendale St. Livonia, Michigan 48150

TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Analytical Report

(consolidated) 0709387

Date Reported: 9/25/2007

WO#:

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/11/2007 12:13:00 AM

Project: Torch Lake AOC SA - 20405.016.002.0274.00

0709387-003 Matrix: SOIL Lab ID:

Client Sample ID Bootjack B-17

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1221	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1232	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1242	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1248	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1254	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1260	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1262	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Total PCBs	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Surr: Decachlorobiphenyl	104	70-130		%REC	1	9/17/2007 6:32:24 PM
Surr: Tetrachloro-m-xylene	93.8	70-130		%REC	1	9/17/2007 6:32:24 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	2,600,000	99,000		μg/Kg-dry	1000	9/24/2007 12:59:02 PM
Arsenic	1,700	990		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Beryllium	ND	5,000		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Chromium	ND	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Cobalt	1,700	5,000	J	μg/Kg-dry	100	9/21/2007 2:47:30 PM
Copper	110,000	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Lead	23,000	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Lithium	2,600	990		μg/Kg-dry	10	9/24/2007 6:06:24 PM
Manganese	48,000	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Nickel	5,300	9,900	J	μg/Kg-dry	100	9/21/2007 2:47:30 PM
Silver	64	130	J	μg/Kg-dry	10	9/19/2007 7:44:53 PM
Strontium	ND	250,000		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Zinc	26,000	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	16	21	J	μg/Kg-dry	1	9/18/2007 3:35:59 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 6 of 46

(consolidated)

Analytical Report

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/11/2007 12:13:00 AM

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-003 Matrix: SOIL Lab ID:

Client Sample ID Bootjack B-17

Analyses	Result	RL Qual	Units	DF	Date Analyzed
PERCENT MOISTURE			D221	6	Analyst: JE
Percent Moisture	24	1.0	wt%	1	9/17/2007 8:30:00 AM

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Analytical Report

(consolidated)

WO#: **0709387**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/11/2007 4:49:00 PM

Project: Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID: 0709387-004 **Matrix:** SOIL

Client Sample ID MGPB-1

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	32	Analyst: MB
Aroclor 1016	ND	79	μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1221	ND	79	μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1232	ND	79	μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1242	ND	79	μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1248	ND	79	μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1254	ND	79	μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1260	ND	79	μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1262	ND	79	μg/Kg-dry	1	9/17/2007 7:12:57 PM
Total PCBs	ND	79	μg/Kg-dry	1	9/17/2007 7:12:57 PM
Surr: Decachlorobiphenyl	117	70-130	%REC	1	9/17/2007 7:12:57 PM
Surr: Tetrachloro-m-xylene	107	70-130	%REC	1	9/17/2007 7:12:57 PM
METALS, ICP/MS			SW602	0A	Analyst: AB2
Aluminum	2,300,000	90,000	μg/Kg-dry	1000	9/24/2007 12:26:25 PM
Arsenic	14,000	900	μg/Kg-dry	100	9/21/2007 2:49:55 PM
Beryllium	ND	4,500	μg/Kg-dry	100	9/21/2007 2:49:55 PM
Chromium	2,100	9,000	J μg/Kg-dry	100	9/21/2007 2:49:55 PM
Cobalt	13,000	4,500	μg/Kg-dry	100	9/21/2007 2:49:55 PM
Copper	1,500,000	9,000	μg/Kg-dry	100	9/21/2007 2:49:55 PM
Lead	64,000	9,000	μg/Kg-dry	100	9/21/2007 2:49:55 PM
Lithium	4,500	900	μg/Kg-dry	10	9/24/2007 6:08:09 PM
Manganese	370,000	9,000	μg/Kg-dry	100	9/21/2007 2:49:55 PM
Nickel	18,000	9,000	μg/Kg-dry	100	9/21/2007 2:49:55 PM
Silver	2,800	81	μg/Kg-dry	10	9/19/2007 7:46:45 PM
Strontium	ND	230,000	μg/Kg-dry	100	9/21/2007 2:49:55 PM
Zinc	93,000	9,000	μg/Kg-dry	100	9/21/2007 2:49:55 PM
MERCURY			SW747	1A	Analyst: AB2
Mercury	500	24	μg/Kg-dry	1	9/18/2007 3:37:39 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 8 of 46

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

Analytical Report

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/11/2007 4:49:00 PM

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-004 Matrix: SOIL Lab ID:

Client Sample ID MGPB-1

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	16	1.0	wt%	1	9/17/2007 8:30:00 AM

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Analytical Report

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007 10:23:00 AM

Project: Torch Lake AOC SA - 20405.016.002.0274.00

0709387-005 Matrix: SOIL Lab ID:

Client Sample ID Mickelson B-6

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1221	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1232	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1242	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1248	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1254	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1260	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1262	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Total PCBs	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Surr: Decachlorobiphenyl	121	70-130		%REC	1	9/17/2007 7:53:34 PM
Surr: Tetrachloro-m-xylene	113	70-130		%REC	1	9/17/2007 7:53:34 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	7,800,000	79,000		μg/Kg-dry	1000	9/24/2007 12:28:19 PM
Arsenic	14,000	790		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Beryllium	730	4,000	J	μg/Kg-dry	100	9/21/2007 2:52:21 PM
Chromium	980,000	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Cobalt	16,000	4,000		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Copper	490,000	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Lead	25,000	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Lithium	4,000	790		μg/Kg-dry	10	9/24/2007 6:09:55 PM
Manganese	650,000	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Nickel	180,000	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Silver	510	100		μg/Kg-dry	10	9/19/2007 7:48:37 PM
Strontium	ND	200,000		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Zinc	43,000	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	15	15	J	μg/Kg-dry	1	9/18/2007 3:39:20 PM
PERCENT MOISTURE				D2210	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 10 of 46

(consolidated)

Analytical Report

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007 10:23:00 AM

Project: Torch Lake AOC SA - 20405.016.002.0274.00

0709387-005 Matrix: SOIL Lab ID:

Client Sample ID Mickelson B-6

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	21	1.0	wt%	1	9/17/2007 8:30:00 AM

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Analytical Report

(consolidated)

WO#: **0709387**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/12/2007 2:42:00 PM

Project: Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID: 0709387-006 **Matrix:** SOIL

Client Sample ID H & Y Marina B-19

Analyses	Result	RL Ç)ual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1221	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1232	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1242	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1248	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1254	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1260	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1262	11	36	J	μg/Kg-dry	1	9/17/2007 8:34:31 PM
Total PCBs	11	36	J	μg/Kg-dry	1	9/17/2007 8:34:31 PM
Surr: Decachlorobiphenyl	105	70-130		%REC	1	9/17/2007 8:34:31 PM
Surr: Tetrachloro-m-xylene	94.9	70-130		%REC	1	9/17/2007 8:34:31 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	1,800,000	69,000		μg/Kg-dry	1000	9/24/2007 1:00:56 PM
Arsenic	30,000	690		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Beryllium	ND	3,400		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Chromium	460,000	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Cobalt	37,000	3,400		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Copper	470,000	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Lead	440,000	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Lithium	740	690		μg/Kg-dry	10	9/24/2007 6:16:08 PM
Manganese	5,500,000	69,000		μg/Kg-dry	1000	9/24/2007 4:03:20 PM
Nickel	250,000	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Silver	380	89		μg/Kg-dry	10	9/19/2007 7:50:28 PM
Strontium	ND	170,000		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Zinc	83,000	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	9.9	27	J	μg/Kg-dry	1	9/18/2007 3:40:59 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 12 of 46

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Analytical Report

(consolidated)

WO#: **0709387**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/12/2007 2:42:00 PM

Project: Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID: 0709387-006 **Matrix:** SOIL

Client Sample ID H & Y Marina B-19

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2	216	Analyst: JE
Percent Moisture	8.9	1.0	wt%	1	9/17/2007 8:30:00 AM

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Analytical Report

(consolidated)

WO#: **0709387**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/10/2007

Project: Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID: 0709387-007 **Matrix:** SOIL

Client Sample ID Gay S1-21

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	82	Analyst: MB
Aroclor 1016	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM
Aroclor 1221	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM
Aroclor 1232	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM
Aroclor 1242	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM
Aroclor 1248	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM
Aroclor 1254	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM
Aroclor 1260	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM
Aroclor 1262	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM
Total PCBs	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM
Surr: Decachlorobiphenyl	120	70-130		%REC	1	9/17/2007 9:15:09 PM
Surr: Tetrachloro-m-xylene	108	70-130		%REC	1	9/17/2007 9:15:09 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	15,000,000	86,000		μg/Kg-dry	1000	9/24/2007 12:30:11 PM
Arsenic	670	860	J	μg/Kg-dry	100	9/21/2007 3:52:05 PM
Beryllium	ND	4,300		μg/Kg-dry	100	9/21/2007 3:52:05 PM
Chromium	19,000	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM
Cobalt	18,000	4,300		μg/Kg-dry	100	9/21/2007 3:52:05 PM
Copper	1,400,000	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM
Lead	1,500	8,600	J	μg/Kg-dry	100	9/21/2007 3:52:05 PM
Lithium	5,100	860		μg/Kg-dry	10	9/24/2007 6:17:54 PM
Manganese	300,000	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM
Nickel	23,000	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM
Silver	800	88		μg/Kg-dry	10	9/19/2007 7:52:18 PM
Strontium	ND	210,000		μg/Kg-dry	100	9/21/2007 3:52:05 PM
Zinc	62,000	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	5.5	18	J	μg/Kg-dry	1	9/18/2007 3:42:37 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 14 of 46

Collection Date: 9/10/2007

Matrix: SOIL

Analytical Report (consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Torch Lake AOC SA - 20405.016.002.0274.00

0709387-007 Lab ID:

Client Sample ID Gay S1-21

Project:

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2:	216	Analyst: JE
Percent Moisture	1.7	1.0	wt%	1	9/17/2007 8:30:00 AM

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Analytical Report

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Project: Torch Lake AOC SA - 20405.016.002.0274.00

0709387-008 Matrix: SOIL Lab ID:

Client Sample ID Lake Linden S2-8

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1221	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1232	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1242	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1248	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1254	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1260	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1262	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Total PCBs	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Surr: Decachlorobiphenyl	101	70-130		%REC	1	9/17/2007 9:55:59 PM
Surr: Tetrachloro-m-xylene	93.7	70-130		%REC	1	9/17/2007 9:55:59 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	11,000,000	110,000		μg/Kg-dry	1000	9/24/2007 12:32:04 PM
Arsenic	1,100	1,100	J	μg/Kg-dry	100	9/21/2007 3:54:31 PM
Beryllium	940	5,400	J	μg/Kg-dry	100	9/21/2007 3:54:31 PM
Chromium	20,000	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Cobalt	14,000	5,400		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Copper	2,100,000	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Lead	6,900	11,000	J	μg/Kg-dry	100	9/21/2007 3:54:31 PM
Lithium	6,000	1,100		μg/Kg-dry	10	9/24/2007 6:19:42 PM
Manganese	350,000	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Nickel	34,000	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Silver	1,300	120		μg/Kg-dry	10	9/19/2007 7:54:07 PM
Strontium	ND	270,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Zinc	130,000	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	29	12		μg/Kg-dry	1	9/18/2007 3:44:15 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 16 of 46

Analytical Report

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Project: Torch Lake AOC SA - 20405.016.002.0274.00

0709387-008 Matrix: SOIL Lab ID:

Client Sample ID Lake Linden S2-8

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2	216	Analyst: JE
Percent Moisture	24	1.0	wt%	1	9/17/2007 8:30:00 AM

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Collection Date: 9/12/2007

Analytical Report

(consolidated)

WO#: **0709387**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc.

Project: Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID: 0709387-009 **Matrix:** SOIL

Client Sample ID TMS1-2

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1221	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1232	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1242	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1248	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1254	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1260	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1262	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Total PCBs	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Surr: Decachlorobiphenyl	113	70-130		%REC	1	9/17/2007 10:36:34 PM
Surr: Tetrachloro-m-xylene	99.6	70-130		%REC	1	9/17/2007 10:36:34 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	19,000,000	67,000		μg/Kg-dry	1000	9/24/2007 12:33:57 PM
Arsenic	350	670	J	μg/Kg-dry	100	9/21/2007 3:56:58 PM
Beryllium	ND	3,300		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Chromium	14,000	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Cobalt	15,000	3,300		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Copper	2,700,000	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Lead	8,000	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Lithium	7,100	670		μg/Kg-dry	10	9/24/2007 6:21:30 PM
Manganese	430,000	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Nickel	24,000	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Silver	1,200	64		μg/Kg-dry	10	9/19/2007 7:55:57 PM
Strontium	ND	170,000		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Zinc	59,000	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	38	13		μg/Kg-dry	1	9/18/2007 3:45:54 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 18 of 46

(consolidated)

Analytical Report

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-009 Matrix: SOIL Lab ID:

Client Sample ID TMS1-2

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	4.7	1.0	wt%	1	9/17/2007 8:30:00 AM

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Analytical Report

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-010 Matrix: SOIL Lab ID:

Client Sample ID TMS1-5

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
Aroclor 1221	ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
Aroclor 1232	ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
Aroclor 1242	ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
Aroclor 1248	ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
Aroclor 1254	ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
Aroclor 1260	ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
Aroclor 1262	ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
Total PCBs	ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
Surr: Decachlorobiphenyl	123	70-130		%REC	1	9/18/2007 2:00:07 AM
Surr: Tetrachloro-m-xylene	91.1	70-130		%REC	1	9/18/2007 2:00:07 AM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	20,000,000	110,000		μg/Kg-dry	1000	9/24/2007 12:35:49 PM
Arsenic	9,800	1,100		μg/Kg-dry	100	9/21/2007 4:14:58 PM
Beryllium	580	5,400	J	μg/Kg-dry	100	9/21/2007 4:14:58 PM
Chromium	20,000	11,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
Cobalt	21,000	5,400		μg/Kg-dry	100	9/21/2007 4:14:58 PM
Copper	9,100,000	110,000		μg/Kg-dry	1000	9/24/2007 2:19:52 PM
Lead	530,000	11,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
Lithium	5,000	1,100		μg/Kg-dry	10	9/24/2007 6:32:08 PM
Manganese	530,000	11,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
Nickel	30,000	11,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
Silver	2,400	74		μg/Kg-dry	10	9/19/2007 6:45:02 PM
Strontium	ND	270,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
Zinc	100,000	11,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	220	18		μg/Kg-dry	1	9/18/2007 3:56:32 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 20 of 46

Analytical Report (consolidated)

WO#:

Collection Date: 9/12/2007

0709387

Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID: 0709387-010 **Matrix:** SOIL

Client Sample ID TMS1-5

Project:

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2:	216	Analyst: JE
Percent Moisture	10	1.0	wt%	1	9/17/2007 8:30:00 AM

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000

FAX: 734.422.5342 Website: www.rtilab.com

Analytical Report

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-011 Lab ID: Matrix: SOIL

Client Sample ID TMS2-2

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	82	Analyst: MB
Aroclor 1016	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1221	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1232	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1242	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1248	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1254	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1260	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1262	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Total PCBs	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Surr: Decachlorobiphenyl	119	70-130	%REC	1	9/18/2007 2:40:35 AM
Surr: Tetrachloro-m-xylene	100	70-130	%REC	1	9/18/2007 2:40:35 AM
METALS, ICP/MS			SW602	0A	Analyst: AB2
Aluminum	27,000,000	86,000	μg/Kg-dry	1000	9/24/2007 12:37:42 PM
Arsenic	1,200	860	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Beryllium	ND	4,300	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Chromium	19,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Cobalt	25,000	4,300	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Copper	2,000,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Lead	7,300	8,600 J	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Lithium	6,300	860	μg/Kg-dry	10	9/24/2007 6:37:26 PM
Manganese	670,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Nickel	34,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Silver	1,400	100	μg/Kg-dry	10	9/19/2007 6:46:52 PM
Strontium	ND	210,000	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Zinc	87,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
MERCURY			SW747	1 A	Analyst: AB2
Mercury	44	16	μg/Kg-dry	1	9/18/2007 3:58:12 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 22 of 46

Analytical Report (consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-011 Matrix: SOIL Lab ID:

Client Sample ID TMS2-2

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
PERCENT MOISTURE			D22	16	Analyst: JE
Percent Moisture	14	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 23 of 46

Collection Date: 9/12/2007

Analytical Report (consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-012 Matrix: SOIL Lab ID:

Client Sample ID HubS1-12

Analyses	Result	RL (Qual Units		DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	35	μg/Κ <u>ς</u>	j-dry	1	9/18/2007 3:21:30 AM
Aroclor 1221	ND	35	μg/Kg	j-dry	1	9/18/2007 3:21:30 AM
Aroclor 1232	ND	35	μg/Kg	j-dry	1	9/18/2007 3:21:30 AM
Aroclor 1242	ND	35	μg/Kg	j-dry	1	9/18/2007 3:21:30 AM
Aroclor 1248	ND	35	μg/Kg	j-dry	1	9/18/2007 3:21:30 AM
Aroclor 1254	ND	35	μg/Kg	j-dry	1	9/18/2007 3:21:30 AM
Aroclor 1260	ND	35	μg/Kg	j-dry	1	9/18/2007 3:21:30 AM
Aroclor 1262	ND	35	μg/Kg	j-dry	1	9/18/2007 3:21:30 AM
Total PCBs	ND	35	μg/Kg	j-dry	1	9/18/2007 3:21:30 AM
Surr: Decachlorobiphenyl	118	70-130	%RE	С	1	9/18/2007 3:21:30 AM
Surr: Tetrachloro-m-xylene	108	70-130	%RE	С	1	9/18/2007 3:21:30 AM
METALS, ICP/MS				SW6020	DA .	Analyst: AB2
Aluminum	15,000,000	90,000	μg/Kç	j-dry	1000	9/24/2007 12:39:34 PM
Arsenic	4,800	900	μg/Kg	j-dry	100	9/21/2007 4:24:38 PM
Beryllium	ND	4,500	μg/Kg	j-dry	100	9/21/2007 4:24:38 PM
Chromium	24,000	9,000	μg/Kg	j-dry	100	9/21/2007 4:24:38 PM
Cobalt	21,000	4,500	μg/Kg	j-dry	100	9/21/2007 4:24:38 PM
Copper	6,000,000	90,000	μg/Kg	j-dry	1000	9/25/2007 4:13:44 PM
Lead	11,000	9,000	μg/Kg	j-dry	100	9/21/2007 4:24:38 PM
Lithium	12,000	800	μg/Kg	j-dry	10	9/24/2007 6:39:13 PM
Manganese	320,000	9,000	μg/Kg	j-dry	100	9/21/2007 4:24:38 PM
Nickel	39,000	9,000	μg/Kg	j-dry	100	9/21/2007 4:24:38 PM
Silver	990	80	μg/Kg	j-dry	10	9/19/2007 6:48:42 PM
Strontium	ND	220,000	μg/Kg	j-dry	100	9/21/2007 4:24:38 PM
Zinc	95,000	9,000	μg/Kg	j-dry	100	9/21/2007 4:24:38 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	3.6	16	J μg/Κ <u></u>	j-dry	1	9/18/2007 3:59:53 PM
PERCENT MOISTURE				D2216	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 24 of 46

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

Analytical Report

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-012 Matrix: SOIL Lab ID:

Client Sample ID HubS1-12

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2:	216	Analyst: JE
Percent Moisture	5.0	1.0	wt%	1	9/17/2007 8:30:00 AM

- */X Value exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Analytical Report

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

Matrix: SOIL 0709387-013 Lab ID:

Client Sample ID MSS1-12

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW86	082	Analyst: MB
Aroclor 1016	ND	42	μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1221	ND	42	μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1232	ND	42	μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1242	ND	42	μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1248	ND	42	μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1254	ND	42	μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1260	ND	42	μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1262	ND	42	μg/Kg-dry	1	9/18/2007 4:01:59 AM
Total PCBs	ND	42	μg/Kg-dry	1	9/18/2007 4:01:59 AM
Surr: Decachlorobiphenyl	121	70-130	%REC	1	9/18/2007 4:01:59 AM
Surr: Tetrachloro-m-xylene	108	70-130	%REC	1	9/18/2007 4:01:59 AM
METALS, ICP/MS			SW60	20A	Analyst: AB2
Aluminum	9,700,000	98,000	μg/Kg-dry	1000	9/24/2007 12:41:27 PM
Arsenic	ND	980	μg/Kg-dry	100	9/21/2007 4:27:04 PM
Beryllium	ND	4,900	μg/Kg-dry	100	9/21/2007 4:27:04 PM
Chromium	7,100	9,800	J μg/Kg-dry	100	9/21/2007 4:27:04 PM
Cobalt	7,700	4,900	μg/Kg-dry	100	9/21/2007 4:27:04 PM
Copper	230,000	9,800	μg/Kg-dry	100	9/21/2007 4:27:04 PM
Lead	6,700	9,800	J μg/Kg-dry	100	9/21/2007 4:27:04 PM
Lithium	3,100	980	μg/Kg-dry	10	9/24/2007 6:40:59 PM
Manganese	240,000	9,800	μg/Kg-dry	100	9/21/2007 4:27:04 PM
Nickel	14,000	9,800	μg/Kg-dry	100	9/21/2007 4:27:04 PM
Silver	370	99	μg/Kg-dry	10	9/19/2007 6:50:29 PM
Strontium	ND	250,000	μg/Kg-dry	100	9/21/2007 4:27:04 PM
Zinc	60,000	9,800	μg/Kg-dry	100	9/21/2007 4:27:04 PM
MERCURY			SW74	71A	Analyst: AB2
Mercury	22	19	μg/Kg-dry	1	9/18/2007 4:01:33 PM
PERCENT MOISTURE			D22	16	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 26 of 46

Analytical Report

(consolidated)

WO#: **0709387**Date Reported: **9/25/2007**

CLIENT: Weston Solutions of Illinois, Inc. **Collection Date:** 9/12/2007

Project: Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID: 0709387-013 **Matrix:** SOIL

Client Sample ID MSS1-12

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2:	216	Analyst: JE
Percent Moisture	21	1.0	wt%	1	9/17/2007 8:30:00 AM

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Analytical Report

(consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-014 Matrix: SOIL Lab ID:

Client Sample ID MSS1-13

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW80	82	Analyst: MB
Aroclor 1016	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1221	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1232	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1242	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1248	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1254	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1260	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1262	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Total PCBs	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Surr: Decachlorobiphenyl	123	70-130	%REC	1	9/18/2007 4:42:28 AM
Surr: Tetrachloro-m-xylene	106	70-130	%REC	1	9/18/2007 4:42:28 AM
METALS, ICP/MS			SW602	20A	Analyst: AB2
Aluminum	23,000,000	84,000	μg/Kg-dry	1000	9/24/2007 12:47:32 PM
Arsenic	8,600	840	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Beryllium	ND	4,200	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Chromium	18,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Cobalt	18,000	4,200	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Copper	2,500,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Lead	200,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Lithium	7,600	840	μg/Kg-dry	10	9/24/2007 6:26:49 PM
Manganese	550,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Nickel	31,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Silver	3,100	97	μg/Kg-dry	10	9/19/2007 6:52:17 PM
Strontium	ND	210,000	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Zinc	170,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
MERCURY			SW747	'1 A	Analyst: AB2
Mercury	280	21	μg/Kg-dry	1	9/18/2007 4:03:15 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */XValue exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 28 of 46

Analytical Report (consolidated)

WO#: 0709387 Date Reported: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc. Collection Date: 9/12/2007

Torch Lake AOC SA - 20405.016.002.0274.00 **Project:**

0709387-014 Matrix: SOIL Lab ID:

Client Sample ID MSS1-13

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	10	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 29 of 46

RTI Laboratories

Date: 9/25/2007

CLIENT: Weston Solutions of Illinois, Inc.

Work Order:

0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: PMOIST

Sample ID: 0709373-010ADUP	SampType: DUP	TestCode: PMOIST	Units: wt%	Prep Date:	RunNo: 16264
Client ID: ZZZZZZ	Batch ID: R16264	TestNo: D2216		Analysis Date: 9/17/2007	SeqNo: 257565
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Percent Moisture	5.2	1.0		4.494	13.8 20
Sample ID: 0709387-010ADUP	SampType: DUP	TestCode: PMOIST	Units: wt%	Prep Date:	RunNo: 16264
Sample ID: 0709387-010ADUP Client ID: TMS1-5	SampType: DUP Batch ID: R16264	TestCode: PMOIST TestNo: D2216	Units: wt%	Prep Date: Analysis Date: 9/17/2007	RunNo: 16264 SeqNo: 257577
•			Units: wt%	•	

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID:	0709361-001B-MS	SampType: MS	TestCode: SW_6020S Units: µg/Kg-	dry Prep [Date: 9/17/2007	RunNo: 16308
Client ID:	ZZZZZZ	Batch ID: 8388	TestNo: SW6020A	Analysis D	Pate: 9/19/2007	SeqNo: 258622
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	: HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver		54,000	100 50,710 491.3	105 75	125	
Sample ID:	0709361-001B-MSD	SampType: MSD	TestCode: SW_6020S Units: µg/Kg-	dry Prep D	Pate: 9/17/2007	RunNo: 16308
Client ID:	ZZZZZZ	Batch ID: 8388	TestNo: SW6020A	Analysis D	Pate: 9/19/2007	SeqNo: 258623
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	: HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver		59,000	110 55,320 491.3	106 75	125 53,790	9.25 25
Sample ID:	LCS-8388	SampType: LCS	TestCode: SW_6020S Units: μg/Kg	Prep D	Pate: 9/17/2007	RunNo: 16308
Client ID:	LCSS	Batch ID: 8388	TestNo: SW6020A	Analysis D	Pate: 9/19/2007	SeqNo: 258639
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	: HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver		1,000	100 1,000 0	104 80	120	
Sample ID:	LCS-8390	SampType: LCS	TestCode: SW_6020S Units: μg/Kg	Prep D	Pate: 9/17/2007	RunNo: 16308
Client ID:	LCSS	Batch ID: 8390	TestNo: SW6020A	Analysis D	Pate: 9/19/2007	SeqNo: 258640
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	: HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver		1,100	100 1,000 0	109 80	120	
Sample ID:	MB-8388	SampType: MBLK	TestCode: SW_6020S Units: μg/Kg	Prep D	Pate: 9/17/2007	RunNo: 16308
Client ID:	PBS	Batch ID: 8388	TestNo: SW6020A	Analysis D	oate: 9/19/2007	SeqNo: 258641
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	: HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver		ND	10			
Sample ID:	MB-8390	SampType: MBLK	TestCode: SW_6020S Units: μg/Kg	Prep D	Pate: 9/17/2007	RunNo: 16308
Client ID:	PBS	Batch ID: 8390	TestNo: SW6020A	Analysis [Date: 9/19/2007	SeqNo: 258642
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID: MB-8390	SampType: MBLK	TestCode: SW_6020S	Units: µg/Kg	Prep Date: 9/17/2007	RunNo: 16308
Client ID: PBS	Batch ID: 8390	TestNo: SW6020A		Analysis Date: 9/19/2007	SeqNo: 258642
Analyte	Result	PQL SPK value	SPK Ref Val %R	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Silver	ND	10			
Sample ID: 0709361-001B-DUP	SampType: DUP	TestCode: SW_6020S	Units: μg/Kg-dry	Prep Date:	RunNo: 16346
Client ID: ZZZZZZ	Batch ID: 8388	TestNo: SW6020A		Analysis Date: 9/20/2007	SeqNo: 259130
Analyte	Result	PQL SPK value	SPK Ref Val %R	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	4,700	12,000		3,465,000	0 25 J
Sample ID: LCS-8404	SampType: LCS	TestCode: SW_6020S	Units: μg/Kg	Prep Date: 9/18/2007	RunNo: 16346
Client ID: LCSS	Batch ID: 8404	TestNo: SW6020A		Analysis Date: 9/20/2007	SeqNo: 259139
Analyte	Result	PQL SPK value	SPK Ref Val %R	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Lead	910	20 1,000	0 9	.1 80 120	
Sample ID: MB-8404	SampType: MBLK	TestCode: SW_6020S	Units: μg/Kg	Prep Date: 9/18/2007	RunNo: 16346
Client ID: PBS	Batch ID: 8404	TestNo: SW6020A		Analysis Date: 9/20/2007	SeqNo: 259140
Analyte	Result	PQL SPK value	SPK Ref Val %R	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Lead	ND	100			
Sample ID: 0709373-001A-MS	SampType: MS	TestCode: SW_6020S	Units: μg/Kg-dry	Prep Date: 9/17/2007	RunNo: 16388
Client ID: ZZZZZZ	Batch ID: 8389	TestNo: SW6020A		Analysis Date: 9/21/2007	SeqNo: 259885
Analyte	Result	PQL SPK value	SPK Ref Val %R	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qua
Aluminum	4,300,000	9,000 45,070	5,375,000 -2,4	70 75 125	S
Arsenic	370,000	900 45,070	354,700 2	7.5 75 125	S
Beryllium	44,000	4,500 45,070	521.9 9	7.0 75 125	
Chromium	65,000	9,000 45,070	16,440 1	09 75 125	
Cobalt	53,000	4,500 45,070	13,140 89	9.5 75 125	
Coball	00,000				

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID:	0709373-001A-MS	SampType: MS	TestCo	de: SW_6020 S	Units: μg/	/Kg-dry	Prep Da	te: 9/17/20	07	RunNo: 163	388	
Client ID:	ZZZZZZ	Batch ID: 8389	Test	No: SW6020A			Analysis Da	te: 9/21/20	07	SeqNo: 259	885	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		250,000	9,000	45,070	291,000	-97.6	75	125				S
Manganese		250,000	9,000	45,070	272,500	-57.1	75	125				S
Nickel		67,000	9,000	45,070	32,890	75.9	75	125				
Zinc		170,000	9,000	45,070	182,700	-33.3	75	125				S
Sample ID:	0709373-001A-MSD	SampType: MSD	TestCo	de: SW_6020 \$	Units: µg	/Kg-dry	Prep Da	te: 9/17/20	07	RunNo: 163	388	
Client ID:	ZZZZZZ	Batch ID: 8389	Test	lo: SW6020A			Analysis Da	te: 9/21/20	07	SeqNo: 25 9	9886	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aluminum		5,300,000	10,000	50,300	5,375,000	-125	75	125	4,261,000	21.9	25	S
Arsenic		510,000	1,000	50,300	354,700	301	75	125	367,100	31.8	25	SR
Beryllium		55,000	5,000	50,300	521.9	108	75	125	44,250	21.3	25	
Chromium		78,000	10,000	50,300	16,440	122	75	125	65,360	17.6	25	
Cobalt		62,000	5,000	50,300	13,140	96.8	75	125	53,470	14.5	25	
Copper		370,000,000	10,000	50,300	277,700,000	188,000	75	125	267,700,000	32.6	25	SR
Lead		380,000	10,000	50,300	291,000	170	75	125	247,000	41.6	25	SR
Manganese		280,000	10,000	50,300	272,500	18.8	75	125	246,800	13.3	25	S
Nickel		80,000	10,000	50,300	32,890	93.8	75	125	67,130	17.6	25	
Zinc		230,000	10,000	50,300	182,700	98.4	75	125	167,600	32.3	25	R
Sample ID:	LCS-8389	SampType: LCS	TestCo	de: SW_6020S	Units: µg	/Kg	Prep Da	te: 9/17/20	07	RunNo: 163	388	
Client ID:	LCSS	Batch ID: 8389	Test	lo: SW6020A			Analysis Da	te: 9/21/20	07	SeqNo: 25 9	914	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aluminum		1,000	1,000	1,000	0	102	80	120				
Arsenic		1,000	100	1,000	0	102	80	120				
Beryllium		1,000	500	1,000	0	100	80	120				
Chromium		1,000	1,000	1,000	0	104	80	120				
Cobalt		1,000	500	1,000	0	104	80	120				
Copper		1,000	1,000	1,000	0	105	80	120				
Lead		980	1,000	1,000	0	97.9	80	120				J

Qualifiers:

- Value above quantitation range
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- Analyte detected below quantitation lin
- R RPD outside accepted recovery limits

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID:	LCS-8389	SampType: LCS	TestCod	e: SW_6020S	Units: µg/Kg		Prep Dat	e: 9/17/20	07	RunNo: 163	888	
Client ID:	LCSS	Batch ID: 8389	TestN	o: SW6020A			Analysis Dat	e: 9/21/20	07	SeqNo: 25 9	914	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Manganese		1,000	1,000	1,000	0	104	80	120				
Nickel		1,000	1,000	1,000	0	102	80	120				
Zinc		950	1,000	1,000	0	94.8	80	120				J
Sample ID:	MB-8389	SampType: MBLK	TestCod	e: SW_6020S	Units: µg/Kg		Prep Dat	e: 9/17/20	07	RunNo: 163	388	
Client ID:	PBS	Batch ID: 8389	TestN	o: SW6020A			Analysis Dat	e: 9/21/20	07	SeqNo: 259	915	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aluminum		ND	100									
Arsenic		ND	10									
Beryllium		ND	50									
Chromium		ND	100									
Cobalt		ND	50									
Copper		ND	100									
Lead		ND	100									
Manganese		ND	100									
Nickel		ND	100									
Strontium		ND	2,500									
Zinc		ND	100									
	LCS-8404	SampType: LCS	TestCod	e: SW 6020S	Units: µg/Kg		Prep Dat	e: 9/18/20	07	RunNo: 163	888	
Sample ID:		Samp rype. LCS			onno. pg/rtg					0 11 050	1927	
Sample ID: Client ID:	LCSS	Batch ID: 8404		o: SW6020A	omo. pgrig		Analysis Dat	e: 9/21/20	07	SeqNo: 25 9	J21	
Client ID:	LCSS			_	SPK Ref Val	%REC	Analysis Dat		07 RPD Ref Val	SeqNo: 259	RPDLimit	Qua
•	LCSS	Batch ID: 8404	TestN	o: SW6020A	, , ,	%REC 94.9	•					
Client ID:	LCSS	Batch ID: 8404 Result	TestN PQL	o: SW6020A SPK value	SPK Ref Val		LowLimit	HighLimit				
Client ID: Analyte Aluminum Arsenic	LCSS	Batch ID: 8404 Result	PQL 1,000	o: SW6020A SPK value	SPK Ref Val	94.9	LowLimit 80	HighLimit				
Client ID: Analyte Aluminum Arsenic Beryllium	LCSS	Batch ID: 8404 Result 950 1,100	TestN PQL 1,000 100	o: SW6020A SPK value 1,000 1,000	SPK Ref Val 0 0	94.9 115	LowLimit 80 80	HighLimit 120 120				Qua J J
Client ID: Analyte Aluminum Arsenic Beryllium Chromium	LCSS	Batch ID: 8404 Result 950 1,100 940	TestN PQL 1,000 100 500	o: SW6020A SPK value 1,000 1,000 1,000	SPK Ref Val 0 0 0	94.9 115 94.0	LowLimit 80 80 80	HighLimit 120 120 120				J
Client ID: Analyte Aluminum	LCSS	Batch ID: 8404 Result 950 1,100 940 950	TestN PQL 1,000 100 500 1,000	9: SW6020A SPK value 1,000 1,000 1,000 1,000	SPK Ref Val 0 0 0 0	94.9 115 94.0 94.9	LowLimit 80 80 80 80 80	HighLimit 120 120 120 120 120				J

M Manual Integration used to determine area response

RL Reporting Detection Limit

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID: LCS-8404 Client ID: LCSS	SampType: LCS Batch ID: 8404	TestCode: SW_6020S Units: μg/Kg TestNo: SW6020A	Prep Date: 9/18/2007 Analysis Date: 9/21/2007	RunNo: 16388 SeqNo: 259927
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Manganese	950	1,000 1,000 0	95.2 80 120	J
Nickel	960	1,000 1,000 0	95.7 80 120	J
Zinc	1,100	1,000 1,000 0	106 80 120	
Sample ID: MB-8404	SampType: MBLK	TestCode: SW_6020S Units: µg/Kg	Prep Date: 9/18/2007	RunNo: 16388
Client ID: PBS	Batch ID: 8404	TestNo: SW6020A	Analysis Date: 9/21/2007	SeqNo: 259928
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	ND	100		
Arsenic	ND	10		
Beryllium	ND	50		
Chromium	ND	100		
Cobalt	ND	50		
Copper	ND	100		
Lead	ND	100		
Manganese	ND	100		
Nickel	ND	100		
Strontium	ND	2,500		
Zinc	ND	100		
Sample ID: LCS-8389	SampType: LCS	TestCode: SW_6020S Units: µg/Kg	Prep Date: 9/17/2007	RunNo: 16410
Client ID: LCSS	Batch ID: 8389	TestNo: SW6020A	Analysis Date: 9/24/2007	SeqNo: 260416
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Copper	980	1,000 1,000 0	98.0 80 120	J
Sample ID: MB-8389	SampType: MBLK	TestCode: SW_6020S Units: μg/Kg	Prep Date: 9/17/2007	RunNo: 16410
Client ID: PBS	Batch ID: 8389	TestNo: SW6020A	Analysis Date: 9/24/2007	SeqNo: 260417
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID:	MB-8389	SampType:	MBLK	TestCode	e: SW_6020S	Units: µg/Kg		Prep Date	e: 9/17/2007	RunNo: 16410	
Client ID:	PBS	Batch ID:	8389	TestNo	: SW6020A			Analysis Date	e: 9/24/2007	SeqNo: 260417	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Copper			ND	100							
Sample ID:	0709373-001A-MS	SampType:	MS	TestCode	e: SW_6020S	Units: µg/Kg-c	ry	Prep Date	e: 9/17/2007	RunNo: 16410	
Client ID:	ZZZZZZ	Batch ID:	8389	TestNo	: SW6020A			Analysis Date	e: 9/24/2007	SeqNo: 260594	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Lithium			54,000	900	45,070	2,975	114	75	125		
Sample ID:	0709373-001A-MSD	SampType:	MSD	TestCode	e: SW_6020S	Units: µg/Kg-c	ry	Prep Date	e: 9/17/2007	RunNo: 16410	
Client ID:	ZZZZZZ	Batch ID:	8389	TestNo	: SW6020A			Analysis Date	e: 9/24/2007	SeqNo: 260595	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Lithium			59,000	1,000	50,300	2,975	112	75	125 54,490	8.42 25	
Sample ID:	LCS-8389	SampType:	LCS	TestCode	e: SW_6020S	Units: µg/Kg		Prep Date	e: 9/17/2007	RunNo: 16410	
Client ID:	LCSS	Batch ID:	8389	TestNo	: SW6020A			Analysis Date	e: 9/24/2007	SeqNo: 260622	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Lithium			1,200	1,000	1,000	0	115	80	120		
Sample ID:	LCS-8404	SampType:	LCS	TestCode	e: SW_6020S	Units: µg/Kg		Prep Date	e: 9/18/2007	RunNo: 16410	
Client ID:	LCSS	Batch ID:	8404	TestNo	: SW6020A			Analysis Date	e: 9/24/2007	SeqNo: 260623	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Lithium			1,100	1,000	1,000	0	106	80	120		
Sample ID:	MB-8389	SampType:	MBLK	TestCode	e: SW_6020S	Units: µg/Kg		Prep Date	e: 9/17/2007	RunNo: 16410	
Client ID:	PBS	Batch ID:	8389	TestNo	: SW6020A			Analysis Date	e: 9/24/2007	SeqNo: 260624	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID:	MB-8389	SampType: MBLK	TestCode: \$	SW_6020S	Units: µg/Kg		Prep Date	e: 9/17/20	07	RunNo: 164	10	
Client ID:	PBS	Batch ID: 8389	TestNo: \$	SW6020A			Analysis Date	e: 9/24/20	07	SeqNo: 260	624	
Analyte		Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lithium		ND	100									
Sample ID:	MB-8404	SampType: MBLK	TestCode: \$	SW_6020S	Units: µg/Kg		Prep Date	e: 9/18/20	07	RunNo: 164	10	
Client ID:	PBS	Batch ID: 8404	TestNo: \$	SW6020A			Analysis Date	e: 9/24/20	07	SeqNo: 260	625	
Analyte		Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lithium		ND	100									
Sample ID:	0709387-014A-MS	SampType: MS	TestCode: \$	SW_6020S	Units: µg/Kg-d	lry	Prep Date	e:		RunNo: 164	10	
Client ID:	MSS1-13	Batch ID: 8404	TestNo: \$	SW6020A			Analysis Date	e: 9/24/20	07	SeqNo: 260	629	
Analyte		Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lithium		51,000	840	41,770	7,621	104	75	125				
Sample ID:	0709387-014A-MSD	SampType: MSD	TestCode: \$	SW_6020S	Units: µg/Kg-d	lry	Prep Date	e:		RunNo: 164	10	
Client ID:	MSS1-13	Batch ID: 8404	TestNo: \$	SW6020A			Analysis Date	e: 9/24/20	07	SeqNo: 260	630	
Analyte		Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lithium		51,000	840	41,770	7,621	103	75	125	50,920	0.356	25	
Sample ID:	LCS-8389	SampType: LCS	TestCode: \$	SW_6020S	Units: µg/Kg		Prep Date	e: 9/17/20	07	RunNo: 164	10	
Client ID:	LCSS	Batch ID: 8389	TestNo: \$	SW6020A			Analysis Date	e: 9/24/20	07	SeqNo: 261	241	
Analyte		Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
		ND	1,000	1,000	0	0	80	120				S
Aluminum		ND	100	1,000	0	0	80	120				S
Aluminum Arsenic		IND			•	0	80	120				_
Arsenic		ND ND	500	1,000	0	U	00					S
				1,000 1,000	0	0	80	120				S
Arsenic Beryllium		ND	500 1,000 500		0 0 0	Ū						

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_6020S

Sample ID: LCS-8389	SampType: LCS	TestCode: SW_6	020S Units: μg/Kg		Prep Da	te: 9/17/20 0	07	RunNo: 16 4	110	
Client ID: LCSS	Batch ID: 8389	TestNo: SW60	20A		Analysis Da	te: 9/24/20 0	07	SeqNo: 26 1	1241	
Analyte	Result	PQL SPK va	lue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	ND	1,000 1,	000 0	0	80	120				S
Manganese	1,100	1,000 1,	000 0	109	80	120				
Nickel	ND	1,000 1,	000 0	0	80	120				S
Silver	ND	100 1,	000 0	0	80	120				S
Zinc	1,000	1,000 1,	000 0	105	80	120				
Sample ID: MB-8389	SampType: MBLK	TestCode: SW_6	020S Units: µg/Kg		Prep Da	te: 9/17/20 0)7	RunNo: 164	110	
Client ID: PBS	Batch ID: 8389	TestNo: SW60	20A		Analysis Da	te: 9/24/20 0	07	SeqNo: 261	1242	
Analyte	Result	PQL SPK va	lue SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	ND	100								
Arsenic	ND	10								
Beryllium	ND	50								
Chromium	ND	100								
Cobalt	ND	50								
Copper	ND	100								
Lead	ND	100								
Lithium	ND	100								
Manganese	ND	100								
Nickel	ND	100								
Silver	ND	10								
Strontium	ND	2,500								
Zinc	ND	100								

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_7471S

Sample ID:	MB-8402	SampType:	MBLK	TestCod	e: SW_7471S	Units: µg/Kg		Prep Date	e: 9/18/2007	RunNo: 16278	
Client ID:	PBS	Batch ID:	8402	TestNo	o: SW7471A			Analysis Date	e: 9/18/2007	SeqNo: 257939	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury			ND	24							
Sample ID:	LCS-8402	SampType:	LCS	TestCod	e: SW_7471S	Units: µg/Kg		Prep Date	e: 9/18/2007	RunNo: 16278	
Client ID:	LCSS	Batch ID:	8402	TestN	o: SW7471A			Analysis Date	e: 9/18/2007	SeqNo: 257940	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury			190	21	208.3	0	91.3	80	120		
Sample ID:	0709387-001A-MS	SampType:	MS	TestCod	e: SW_7471S	Units: µg/Kg-c	lry	Prep Date	e: 9/18/2007	RunNo: 16278	
Client ID:	Traprock-8	Batch ID:	8402	TestN	o: SW7471A			Analysis Date	e: 9/18/2007	SeqNo: 257942	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury			260	21	209.9	52.07	99.6	80	120		
Sample ID:	0709387-001A-MSD	SampType:	MSD	TestCod	e: SW_7471S	Units: µg/Kg-c	lry	Prep Date	e: 9/18/2007	RunNo: 16278	
Client ID:	Traprock-8	Batch ID:	8402	TestN	o: SW7471A			Analysis Date	e: 9/18/2007	SeqNo: 257945	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury			310	25	246.4	52.07	104	80	120 261.1	16.5 25	
Sample ID:	0709421-001A-MS	SampType:	MS	TestCod	e: SW_7471S	Units: µg/Kg		Prep Date	e: 9/18/2007	RunNo: 16278	
Client ID:	ZZZZZZ	Batch ID:	8402	TestN	o: SW7471A			Analysis Date	e: 9/18/2007	SeqNo: 257958	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury			370	13	128.2	187.1	141	80	120		S
Sample ID:	0709421-001A-MSD	SampType:	MSD	TestCod	e: SW_7471S	Units: µg/Kg	·	Prep Date	e: 9/18/2007	RunNo: 16278	
Client ID:	ZZZZZZ	Batch ID:	8402	TestN	o: SW7471A			Analysis Date	e: 9/18/2007	SeqNo: 257959	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_7471S

Sample ID: 0709421-001A-MSD	SampType: MSD	TestCoo	le: SW_7471S	Units: μg/Kg		Prep Da	te: 9/18/20	07	RunNo: 162	278	
Client ID: ZZZZZZ	Batch ID: 8402	TestN	lo: SW7471A			Analysis Da	te: 9/18/20	07	SeqNo: 257	959	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	360	15	147.1	187.1	120	80	120	367.8	1.27	25	

M Manual Integration used to determine area response

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: Ics-8383	SampType: LCS	TestCod	de: SW_8082S	Units: μg/Kg		Prep Da	te: 9/17/20	07	RunNo: 162	263	
Client ID: LCSS	Batch ID: 8383	TestN	lo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 257	7552	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	170	33	166.7	0	103	70	130				
Aroclor 1260	180	33	166.7	0	106	70	130				
AROCLOR-1016-1	170	33	166.7	0	102	70	130				
AROCLOR-1016-2	170	33	166.7	0	102	70	130				
AROCLOR-1016-3	160	33	166.7	0	98.2	70	130				
AROCLOR-1016-4	180	33	166.7	0	110	70	130				
AROCLOR-1016-5	170	33	166.7	0	105	70	130				
AROCLOR-1260-1	170	33	166.7	0	101	70	130				
AROCLOR-1260-2	170	33	166.7	0	103	70	130				
AROCLOR-1260-3	190	33	166.7	0	111	70	130				
AROCLOR-1260-4	180	33	166.7	0	111	70	130				
AROCLOR-1260-5	170	33	166.7	0	103	70	130				
Surr: Decachlorobiphenyl	9.5		8.300		114	70	130				
Surr: Tetrachloro-m-xylene	8.9		8.300		108	70	130				
Sample ID: mb-8383	SampType: MBLK	TestCod	de: SW_8082S	Units: µg/Kg		Prep Da	te: 9/17/20	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8383	TestN	lo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 25 7	7553	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	33									
Aroclor 1221	ND	33									
Aroclor 1232	ND	33									
Aroclor 1242	ND	33									
Aroclor 1248	ND	33									
Aroclor 1254	ND	33									
Aroclor 1260	ND	33									
Aroclor 1262	ND	33									
	ND	33									
Total PCBs	ND										
Total PCBs AROCLOR-1016-1	ND ND	33									
		33 33									

M Manual Integration used to determine area response

RL Reporting Detection Limit

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: mb-8383	SampType: MBLK	TestCod	e: SW_8082 S	Units: μg/Kg		Prep Da	te: 9/17/2 0	007	RunNo: 162	263	
Client ID: PBS	Batch ID: 8383	TestN	o: SW8082			Analysis Da	te: 9/17/2 0	007	SeqNo: 257	7553	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
AROCLOR-1016-4	ND	33									
AROCLOR-1016-5	ND	33									
AROCLOR-1221-1	ND	33									
AROCLOR-1221-2	ND	33									
AROCLOR-1221-3	ND	33									
AROCLOR-1221-4	ND	33									
AROCLOR-1221-5	ND	33									
AROCLOR-1232-1	ND	33									
AROCLOR-1232-2	ND	33									
AROCLOR-1232-3	ND	33									
AROCLOR-1232-4	ND	33									
AROCLOR-1232-5	ND	33									
AROCLOR-1242-1	ND	33									
AROCLOR-1242-2	ND	33									
AROCLOR-1242-3	ND	33									
AROCLOR-1242-4	ND	33									
AROCLOR-1242-5	ND	33									
AROCLOR-1248-1	ND	33									
AROCLOR-1248-2	ND	33									
AROCLOR-1248-3	ND	33									
AROCLOR-1248-4	ND	33									
AROCLOR-1248-5	ND	33									
AROCLOR-1254-1	ND	33									
AROCLOR-1254-2	ND	33									
AROCLOR-1254-3	ND	33									
AROCLOR-1254-4	ND	33									
AROCLOR-1254-5	ND	33									
AROCLOR-1260-1	ND	33									
AROCLOR-1260-2	ND	33									
AROCLOR-1260-3	ND	33									
AROCLOR-1260-4	ND	33									

Qualifiers:

Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: mb-8383	SampType: MBLK	TestCoo	le: SW_8082S	Units: μg/K	g	Prep Da	te: 9/17/20	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8383	TestN	lo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 257	' 553	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
AROCLOR-1260-5	ND	33									
AROCLOR-1262-1	ND	33									
AROCLOR-1262-2	ND	33									
AROCLOR-1262-3	ND	33									
AROCLOR-1262-4	ND	33									
AROCLOR-1262-5	ND	33									
Surr: Decachlorobiphenyl	9.7		8.300		117	70	130				
Surr: Tetrachloro-m-xylene	9.2		8.300		111	70	130				
Sample ID: 0709387-006a-ms	SampType: ms	TestCoo	le: sw_8082s	Units: µg/K	g-dry	Prep Da	te: 9/16/20	07	RunNo: 162	263	
Client ID: H & Y Marina B-19	Batch ID: 8381	TestN	lo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 258	3437	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	170	36	183.0	0	94.8	70	130				
Aroclor 1260	220	36	183.0	0	121	70	130				
Surr: Decachlorobiphenyl	12		9.114		127	70	130				
Surr: Tetrachloro-m-xylene	10		9.114		110	70	130				
Sample ID: 0709387-006a-msd	SampType: msd	TestCoo	le: sw_8082s	Units: µg/K	g-dry	Prep Da	te: 9/16/20	07	RunNo: 162	263	
Client ID: H & Y Marina B-19	Batch ID: 8381	TestN	lo: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 258	3438	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
•			400.0	0	87.5	17.2	175	173.4	7.92	25	
Aroclor 1016	160	36	183.0	U	01.0					20	
	160 220	36 36	183.0 183.0	0	121	51.6	142	221.6	0.328		
Aroclor 1016 Aroclor 1260 Surr: Decachlorobiphenyl							142 151	221.6	_	25 25	

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: 0709387-010a-ms	SampType: ms	TestCoo	de: sw_8082s	Units: µg/Kg	-dry	Prep Dat	e: 9/17/20	07	RunNo: 162	263	
Client ID: TMS1-5	Batch ID: 8383	TestN	lo: SW8082			Analysis Dat	e: 9/18/20	07	SeqNo: 258	8443	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	170	37	185.1	0	92.0	70	130				
Aroclor 1260	200	37	185.1	0	110	70	130				
Surr: Decachlorobiphenyl	13		9.218		136	70	130				S
Surr: Tetrachloro-m-xylene	9.7		9.218		105	70	130				
Sample ID: 0709387-010a-msd	SampType: msd	TestCod	de: sw_8082s	Units: µg/Kg	-dry	Prep Dat	e: 9/17/20	07	RunNo: 162	263	
Client ID: TMS1-5	Batch ID: 8383	TestN	lo: SW8082			Analysis Dat	e: 9/18/20	07	SeqNo: 258	8444	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	170	37	185.1	0	94.1	17.2	175	170.4	2.16	25	
Aroclor 1260	210	37	185.1	0	113	51.6	142	203.8	2.99	25	
Surr: Decachlorobiphenyl	0		9.218		0	66.8	151		0	25	S
Surr: Tetrachloro-m-xylene	9.8		9.218		107	49.4	143		0	25	
Sample ID: Ics-8381	SampType: Ics	TestCoo	de: sw_8082s	Units: µg/Kg		Prep Dat	e: 9/16/20	07	RunNo: 162	263	
Sample ID: Ics-8381 Client ID: LCSS	SampType: Ics Batch ID: 8381		de: sw_8082s	Units: µg/Kg		Prep Dat Analysis Dat			RunNo: 162 SeqNo: 258		
·			_	Units: µg/Kg	%REC	Analysis Dat	e: 9/17/20				Qual
Client ID: LCSS	Batch ID: 8381	TestN	lo: SW8082			Analysis Dat	e: 9/17/20	07	SeqNo: 258	8466	Qual
Client ID: LCSS Analyte Aroclor 1016	Batch ID: 8381 Result	TestN PQL	lo: SW8082 SPK value	SPK Ref Val	%REC	Analysis Dat	e: 9/17/20 HighLimit	07	SeqNo: 258	8466	Qual
Client ID: LCSS Analyte Aroclor 1016 Aroclor 1260	Batch ID: 8381 Result	TestN PQL 33	SPK value 166.7	SPK Ref Val	%REC	Analysis Dat	e: 9/17/20 HighLimit	07	SeqNo: 258	8466	Qual
Client ID: LCSS Analyte Aroclor 1016 Aroclor 1260 AROCLOR-1016-1	Batch ID: 8381 Result 180 180	PQL 33 33	SPK value 166.7 166.7	SPK Ref Val 0 0	%REC 111 105	Analysis Dat LowLimit 70 70	e: 9/17/20 HighLimit 130 130	07	SeqNo: 258	8466	Qual
Client ID: LCSS Analyte Aroclor 1016 Aroclor 1260 AROCLOR-1016-1 AROCLOR-1016-2	Batch ID: 8381 Result 180 180 160	7estN PQL 33 33 33	SPK value 166.7 166.7 166.7	SPK Ref Val 0 0 0	%REC 111 105 97.3	Analysis Date LowLimit 70 70 70	e: 9/17/20 HighLimit 130 130 130	07	SeqNo: 258	8466	Qual
Analyte Aroclor 1016 Aroclor 1260 AROCLOR-1016-1 AROCLOR-1016-2 AROCLOR-1016-3	Batch ID: 8381 Result 180 180 160 180	PQL 33 33 33 33	SPK value 166.7 166.7 166.7 166.7	SPK Ref Val 0 0 0 0 0 0	%REC 111 105 97.3 108	Analysis Date LowLimit 70 70 70 70 70	HighLimit 130 130 130 130 130	07	SeqNo: 258	8466	Qual
Analyte Aroclor 1016 Aroclor 1260 AROCLOR-1016-1 AROCLOR-1016-2 AROCLOR-1016-3 AROCLOR-1016-4	Result 180 180 160 180 150	7 Fest N PQL 33 33 33 33 33 33	SPK value 166.7 166.7 166.7 166.7 166.7	SPK Ref Val 0 0 0 0 0 0	%REC 111 105 97.3 108 91.8	Analysis Date LowLimit 70 70 70 70 70 70 70	e: 9/17/20 HighLimit 130 130 130 130 130 130	07	SeqNo: 258	8466	Qual
Analyte Aroclor 1016 Aroclor 1260 AROCLOR-1016-1 AROCLOR-1016-2 AROCLOR-1016-3 AROCLOR-1016-4 AROCLOR-1016-5	Result 180 180 160 180 150 170	7estN PQL 33 33 33 33 33 33 33	SPK value 166.7 166.7 166.7 166.7 166.7 166.7	SPK Ref Val 0 0 0 0 0 0 0	%REC 111 105 97.3 108 91.8 102	Analysis Date LowLimit 70 70 70 70 70 70 70 70	e: 9/17/20 HighLimit 130 130 130 130 130 130 130	07	SeqNo: 258	8466	
Client ID: LCSS Analyte	Result 180 180 160 180 150 170 260	7 Fest N PQL 33 33 33 33 33 33 33 33 33 33 33	SPK value 166.7 166.7 166.7 166.7 166.7 166.7 166.7	SPK Ref Val 0 0 0 0 0 0 0 0 0	%REC 111 105 97.3 108 91.8 102 155	Analysis Date LowLimit 70 70 70 70 70 70 70 70 70 70	e: 9/17/20 HighLimit 130 130 130 130 130 130 130 130	07	SeqNo: 258	8466	
Analyte Aroclor 1016 Aroclor 1260 AROCLOR-1016-1 AROCLOR-1016-2 AROCLOR-1016-3 AROCLOR-1016-4 AROCLOR-1016-5 AROCLOR-1260-1 AROCLOR-1260-1 AROCLOR-1260-2	Result 180 180 160 180 150 170 260 160	7estN PQL 33 33 33 33 33 33 33 33 33	SPK value 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7	SPK Ref Val 0 0 0 0 0 0 0 0 0 0	%REC 111 105 97.3 108 91.8 102 155 96.5	Analysis Date LowLimit 70 70 70 70 70 70 70 70 70 70 70	e: 9/17/20 HighLimit 130 130 130 130 130 130 130 130	07	SeqNo: 258	8466	
Analyte Aroclor 1016 Aroclor 1260 AROCLOR-1016-1 AROCLOR-1016-2 AROCLOR-1016-3 AROCLOR-1016-4 AROCLOR-1016-5 AROCLOR-1260-1 AROCLOR-1260-2 AROCLOR-1260-3	Result 180 180 160 180 150 170 260 160 170	7 Fest N PQL 33 33 33 33 33 33 33 33 33 33 33 33 33	SPK value 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	%REC 111 105 97.3 108 91.8 102 155 96.5 103	Analysis Date LowLimit 70 70 70 70 70 70 70 70 70 70 70 70 70	9/17/20 HighLimit 130 130 130 130 130 130 130 130 130 13	07	SeqNo: 258	8466	
Analyte Aroclor 1016 Aroclor 1260 AROCLOR-1016-1 AROCLOR-1016-2 AROCLOR-1016-3 AROCLOR-1016-4 AROCLOR-1016-5 AROCLOR-1260-1	Result 180 180 180 160 180 150 170 260 160 170 180	7 Fest N PQL 33 33 33 33 33 33 33 33 33 33 33 33 33	SPK value 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7 166.7	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 111 105 97.3 108 91.8 102 155 96.5 103 110	Analysis Date LowLimit 70 70 70 70 70 70 70 70 70 70 70 70 70	9/17/20 HighLimit 130 130 130 130 130 130 130 130 130 13	07	SeqNo: 258	8466	

Qualifiers:

Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: Ics-8381	SampType: Ics	TestCode: sw_8082s	Units: µg/Kg		Prep Date	e: 9/16/20	07	RunNo: 162	263	
Client ID: LCSS	Batch ID: 8381	TestNo: SW8082			Analysis Dat	e: 9/17/2 0	07	SeqNo: 258	3466	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Tetrachloro-m-xylene	8.2	8.300		98.4	70	130				
Sample ID: mb-8381	SampType: mblk	TestCode: sw_8082s	Units: µg/Kg		Prep Dat	e: 9/16/2 0	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8381	TestNo: SW8082			Analysis Dat	e: 9/17/20	07	SeqNo: 258	3471	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	33								
Aroclor 1221	ND	33								
Aroclor 1232	ND	33								
Aroclor 1242	ND	33								
Aroclor 1248	ND	33								
Aroclor 1254	ND	33								
Aroclor 1260	ND	33								
Aroclor 1262	ND	33								
Total PCBs	ND	33								
AROCLOR-1016-1	ND	33								
AROCLOR-1016-2	ND	33								
AROCLOR-1016-3	ND	33								
AROCLOR-1016-4	ND	33								
AROCLOR-1016-5	ND	33								
AROCLOR-1221-1	ND	33								
AROCLOR-1221-2	ND	33								
AROCLOR-1221-3	ND	33								
AROCLOR-1221-4	ND	33								
AROCLOR-1221-5	ND	33								
AROCLOR-1232-1	ND	33								
AROCLOR-1232-2	ND	33								
AROCLOR-1232-3	ND	33								
AROCLOR-1232-4	ND	33								
AROCLOR-1232-5	ND	33								
AROCLOR-1242-1	ND	33								

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

Work Order: 0709387

Project: Torch Lake AOC SA - 20405.016.002.0274.00

QC SUMMARY REPORT

TestCode: SW_8082S

Sample ID: mb-8381	SampType: mblk	TestCode	e: sw_8082s	Units: µg/Kg		Prep Da	te: 9/16/2 0	07	RunNo: 162	263	
Client ID: PBS	Batch ID: 8381	TestNo	o: SW8082			Analysis Da	te: 9/17/20	07	SeqNo: 258	3471	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
AROCLOR-1242-2	ND	33									
AROCLOR-1242-3	ND	33									
AROCLOR-1242-4	ND	33									
AROCLOR-1242-5	ND	33									
AROCLOR-1248-1	ND	33									
AROCLOR-1248-2	ND	33									
AROCLOR-1248-3	ND	33									
AROCLOR-1248-4	ND	33									
AROCLOR-1248-5	ND	33									
AROCLOR-1254-1	ND	33									
AROCLOR-1254-2	ND	33									
AROCLOR-1254-3	ND	33									
AROCLOR-1254-4	ND	33									
AROCLOR-1254-5	ND	33									
AROCLOR-1260-1	ND	33									
AROCLOR-1260-2	ND	33									
AROCLOR-1260-3	ND	33									
AROCLOR-1260-4	ND	33									
AROCLOR-1260-5	ND	33									
AROCLOR-1262-1	ND	33									
AROCLOR-1262-2	ND	33									
AROCLOR-1262-3	ND	33									
AROCLOR-1262-4	ND	33									
AROCLOR-1262-5	ND	33									
Surr: Decachlorobiphenyl	9.0		8.300		109	70	130				
Surr: Tetrachloro-m-xylene	8.4		8.300		101	70	130				

Qualifiers: E Value above quantitation range

M Manual Integration used to determine area response

RL Reporting Detection Limit

H Holding times for preparation or analysis exceeded

D Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709387

Polychlorinated Biphenyls by U.S. EPA Method 8082

1.

			<u>Date</u>	<u>Date</u>	<u>Date</u>
Samples	<u>Lab ID</u>	<u>Matrix</u>	Collected	Prepared	Analyzed
Traprock-8	0709387-001	Soil	9/11/07	9/16/07	9/17/07
Traprock-B-12	0709387-002	Soil	9/11/07	9/16/07	9/17/07
Bootjack B-17	0709387-003	Soil	9/11/07	9/16/07	9/17/07
MGPB-1	0709387-004	Soil	9/11/07	9/16/07	9/17/07
Mickelson B-6	0709387-005	Soil	9/12/07	9/16/07	9/17/07
H&Y Marina B-19	0709387-006	Soil	9/12/07	9/17/07	9/17/07
Gay S1-21	0709387-007	Soil	9/10/07	9/16/07	9/17/07
Lake Linden S2-8	0709387-008	Soil	9/12/07	9/16/07	9/17/07
TMS1-2	0709387-009	Soil	9/12/07	9/16/07	9/17/07
TMS1-5	0709387-010	Soil	9/12/07	9/16/07	9/18/07
TMS2-2	0709387-011	Soil	9/12/07	9/16/07	9/18/07
HubS1-12	0709387-012	Soil	9/12/07	9/16/07	9/18/07
MSS1-12	0709387-013	Soil	9/12/07	9/16/07	9/18/07
MSS1-13	0709387-014	Soil	9/12/07	9/16/07	9/18/07

2. Sample Receipt and Holding Times

The samples were received in good condition and were analyzed within the required holding time.

3. Blanks

Two method blanks were associated with these samples. Both method blanks were free of contamination.

4. Laboratory Control Samples

Two laboratory control sample audits were associated with these samples. The Aroclor-1016-5 recovery (155%) for the laboratory control sample associated with Lab Batch 8381 was outside the laboratory

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709387

Polychlorinated Biphenyls by U.S. EPA Method 8082

4. Laboratory Control Samples (Continued)

generated quality control limits. Qualify the Aroclor-1016 results in all samples except H & Y Marina B-19 as estimated (J/UJ).

5. Matrix Spike/Matrix Spike Duplicate

Sample H & Y Marina B-19 was used for the matrix spike/matrix spike duplicate audit. All matrix spike recoveries and matrix spike duplicate recoveries were within the laboratory generated quality control limits. All matrix spike/matrix spike duplicate relative percent difference values were within the laboratory generated quality control limits.

Sample TMS1-5 was also used for the matrix spike/matrix spike duplicate audit. All matrix spike recoveries and matrix spike duplicate recoveries were within the laboratory generated quality control limits. All matrix spike/matrix spike duplicate relative percent difference values were within the laboratory generated quality control limits.

6. Surrogate Spike Recoveries

All Decachlorobiphenyl and Tetrachloro-m-xylene surrogate spike recoveries for all samples were within the laboratory generated quality control limits.

XKrobbe 9/26/07

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709387

Total Metals by U.S. EPA Methods 6020A and 7471A

1.

			Date	<u>Date</u>	<u>Date</u>
<u>Samples</u>	<u>Lab ID</u>	<u>Matrix</u>	Collected	<u>Prepared</u>	Analyzed
Traprock-8	0709387-001	Soil	9/11/07	NP	9/18; 9/19; 9/21;
					9/24
Traprock-B-12	0709387-002	Soil	9/11/07	NP	9/18; 9/19; 9/21;
					9/24
Bootjack B-17	0709387-003	Soil	9/11/07	NP	9/18; 9/19; 9/21;
					9/24
MGPB-1	0709387-004	Soil	9/11/07	NP	9/18; 9/19; 9/21;
					9/24
Mickelson B-6	0709387-005	Soil	9/12/07	NP	9/18; 9/19; 9/21;
					9/24
H&Y Marina B-19	0709387-006	Soil	9/12/07	NP	9/18; 9/19; 9/21;
					9/24
Gay S1-21	0709387-007	Soil	9/10/07	NP	9/18; 9/19; 9/21;
•					9/24
Lake Linden S2-8	0709387-008	Soil	9/12/07	NP	9/18; 9/19; 9/21;
					9/24
TMS1-2	0709387-009	Soil	9/12/07	NP	9/18; 9/19; 9/21;
					9/24
TMS1-5	0709387-010	Soil	9/12/07	NP	9/18; 9/19; 9/21;
					9/24
TMS2-2	0709387-011	Soil	9/12/07	NP	9/18; 9/19; 9/21;
					9/24
HubS1-12	0709387-012	Soil	9/12/07	NP	9/18; 9/19; 9/21;
					9/24; 9/25
MSS1-12	0709387-013	Soil	9/12/07	NP	9/18; 9/19; 9/21;
					9/24
MSS1-13	0709387-014	Soil	9/12/07	NP	9/18; 9/19; 9/21;
				•	9/24
					- · - ·

NP = Not presented with the data package

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709387

Total Metals by U.S. EPA Methods 6020A and 7471A

2. Sample Receipt and Holding Times

The samples were received in good condition and were analyzed within the required holding time.

3. Blanks

The mercury, lead, silver, copper and lithium method blanks associated with these samples were free of contamination. The three total metals method blanks associated with these samples were free of contamination.

4. Laboratory Control Samples

The laboratory control sample recoveries for aluminum (0%), arsenic (0%), beryllium (0%), chromium (0%), cobalt (0%), copper (0%), lead (0%), nickel (0%) and silver (0%) in Lab Batch 8389 were outside the laboratory generated quality control limits. Qualify the aluminum, arsenic, beryllium, chromium, cobalt, copper, lead, nickel, and silver results in samples Traprock-8, Traprock B-12, Bootjack B-17, MGPB-1, Mickelson-B-6, H & Y Marina B-19, Gay S1-21, Lake Linden S2-8 and TMS1-2 as estimated (J/UJ).

5. Matrix Spike/Matrix Spike Duplicate

Sample Traprock-8 was used for the mercury matrix spike/matrix spike duplicate audit. The mercury matrix spike and matrix spike duplicate recoveries were within the laboratory generated quality control limits. The mercury matrix spike/matrix spike duplicate relative percent difference value was within the laboratory generated quality control limits.

Sample MSS1-13 was used for the lithium matrix spike/matrix spike duplicate audit. The lithium matrix spike and matrix spike duplicate recoveries were within the laboratory generated quality control limits. The lithium matrix spike/matrix spike duplicate relative percent difference value was within the laboratory generated quality control limits.

X Krolk-9/26/07

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

ed: 9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/11/2007 10:13:00 AM

Matrix: SOIL

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-001

Client Sample ID Traprock-8

Analyses	Result	RL Q	ual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	B2	Analyst: MB
Aroclor 1016	ND J	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1221	ND	37		µg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1232	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1242	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1248	ND	37		µg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1254	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1260	ND	37		µg/Kg-dry	1	9/17/2007 5:11:02 PM
Aroclor 1262	ND	37		µg/Kg-dry	1	9/17/2007 5:11:02 PM
Total PCBs	ND	37		μg/Kg-dry	1	9/17/2007 5:11:02 PM
Surr: Decachlorobiphenyl	107	70-130		%REC	1	9/17/2007 5:11:02 PM
Surr: Tetrachloro-m-xylene	94.9	70-130		%REC	1	9/17/2007 5:11:02 PM
METALS, ICP/MS				SW602	0A	Analyst: AB
Aluminum	9,800,000 ₹	100,000		μg/Kg-dry	1000	9/24/2007 12:17:21 PM
Arsenic	4,600 T	1,000		µg/Kg-dry	100	9/21/2007 2:42:40 PM
Beryllium	590 🍑	5,100	J	μg/Kg-dry	100	9/21/2007 2:42:40 PM
Chromium	4,500 T	10,000	J	μg/Kg-dry	100	9/21/2007 2:42:40 PM
Cobalt	9,400 T	5,100		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Copper	360,000 T	10,000		µg/Kg-dry	100	9/21/2007 2:42:40 PM
Lead	48,000 J	10,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Lithium	7,300	1,000		μg/Kg-dry	10	9/24/2007 6:02:52 PM
Manganese	390,000	10,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Nickel	30,000	10,000		µg/Kg-dry	100	9/21/2007 2:42:40 PM
Silver	1,700 🕏	87		μg/Kg-dry	10	9/19/2007 7:36:34 PM
Strontium	ND	250,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
Zinc	95,000	10,000		μg/Kg-dry	100	9/21/2007 2:42:40 PM
MERCURY				SW747	1 A	Analyst: AB:
Mercury	52	17		μg/Kg-dry	1	9/18/2007 3:24:18 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 2 of 46

2/crobl 9/24/07

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/11/2007 10:13:00 AM

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-001

Matrix: SOIL

Client Sample ID Traprock-8

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2	216	Analyst: JE
Percent Moisture	12	1.0	. wt%	1	9/17/2007 8:30:00 AM

2/Grad 926/01

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 3 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/11/2007 10:49:00 AM

Matrix: SOIL

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-002

Client Sample ID Traprock B-12

Analyses	Result	RL Q	Qual (U nits	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW80	82	Analyst: MB
Aroclor 1016	ND J	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1221	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1232	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1242	ND	35		µg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1248	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1254	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1260	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Aroclor 1262	ND	35		μg/Kg-dry	1	9/17/2007 5:51:26 PM
Total PCBs	ND	35		µg/Kg-dry	1	9/17/2007 5:51:26 PM
Surr: Decachlorobiphenyl	111	70-130		%REC	1	9/17/2007 5:51:26 PM
Surr: Tetrachloro-m-xylene	101	70-130		%REC	1	9/17/2007 5:51:26 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	13,000,000 J	110,000		μg/Kg-dry	1000	9/24/2007 12:24:31 PM
Arsenic	4,200 J	1,100		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Beryllium	1,400	5,300	J	μg/Kg-dry	100	9/21/2007 2:45:05 PM
Chromium	ND J	11,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM

MERCURY				SW747	1A	Analyst: AB2
Zinc	14,000	11,000		µg/Kg-dry	100	9/21/2007 2:45:05 PM
Strontium	440,000	270,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Silver	180 ブ	64		μg/Kg-dry	10	9/19/2007 7:43:03 PM
Nickel	1,200 5	11,000	J	μg/Kg-dry	100	9/21/2007 2:45:05 PM
Manganese	17,000	11,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Lithium	11,000	1,100		μg/Kg-dry	10	9/24/2007 6:04:38 PM
Lead	17,000 丁	11,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Соррег	47,000 5	11,000		μg/Kg-dry	100	9/21/2007 2:45:05 PM
Cobait	440 3	5,300	J	µg/Kg-ary	100	9/21/2007 2:45:05 PM

Mercury 4.7 14 J μg/Kg-dry 1 9/18/2007 3:34:19 PM

PERCENT MOISTURE

D2216

Analyst: JE

Qualifiers:

- /X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- 7126107
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 4 of 46

Lkroll

Analytical Report

WO#:

0709387 Date Reported: 9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/11/2007 10:49:00 AM

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-002

Client Sample ID Traprock B-12

Matrix: SOIL

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
PERCENT MOISTURE			D	2216	Analyst: JE
Percent Moisture	5.9	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

Value exceeds Maximum Contaminant Level

Ε Value above quantitation range

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Manual Integration used to determine area response M

Reporting Detection Limit

Page 5 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/11/2007 12:13:00 AM

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-003

Client Sample ID Bootjack B-17

Matrix: SOIL

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND J	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1221	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1232	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1242	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1248	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1254	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1260	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Aroclor 1262	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Total PCBs	ND	87		μg/Kg-dry	1	9/17/2007 6:32:24 PM
Surr: Decachlorobiphenyl	104	70-130		%REC	1	9/17/2007 6:32:24 PM
Surr: Tetrachloro-m-xylene	93.8	70-130		%REC	1	9/17/2007 6:32:24 PM
METALS, ICP/MS				SW602	0A	Analyst: AB
Aluminum	2,600,000 丁	99,000		μg/Kg-dry	1000	9/24/2007 12:59:02 PM
Arsenic	1,700 🛣	990		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Beryllium	ND 🌀	5,000		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Chromium	ND J	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Cobalt	1,700 5	5,000	J	μg/Kg-dry	100	9/21/2007 2:47:30 PM
Copper	110,000 T	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Lead	23,000 🌫	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Lithium	2,600	990		μg/Kg-dry	10	9/24/2007 6:06:24 PM
Manganese	48,000	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Nickel	5,300	9,900	J	μg/Kg-dry	100	9/21/2007 2:47:30 PM
Silver	64 丁	130	J	μg/Kg-dry	10	9/19/2007 7:44:53 PM
Strontium	ND	250,000		μg/Kg-dry	100	9/21/2007 2:47:30 PM
Zinc	26,000	9,900		μg/Kg-dry	100	9/21/2007 2:47:30 PM
MERCURY				SW747	1A	Analyst: AB
Mercury	16	21	J	μg/Kg-dry	1	9/18/2007 3:35:59 PM
PERCENT MOISTURE				D2210	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 6 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/11/2007 12:13:00 AM

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-003

Matrix: SOIL

Client Sample ID Bootjack B-17

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE				D2216	Analyst: JE
Percent Moisture	24	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 7 of 46

Analytical Report

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/11/2007 4:49:00 PM

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-004

Matrix: SOIL

Client Sample ID MGPB-1

Analyses	Result	RL Q	Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND J	79		μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1221	ND	79		μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1232	ND	79		μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1242	ND	79		μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1248	ND	79		μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1254	ND	79		μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1260	ND	79		μg/Kg-dry	1	9/17/2007 7:12:57 PM
Aroclor 1262	ND	79		µg/Kg-dry	1	9/17/2007 7:12:57 PM
Total PCBs	ND	79		μg/Kg-dry	1	9/17/2007 7:12:57 PM
Surr: Decachlorobiphenyl	117	70-130		%REC	1	9/17/2007 7:12:57 PM
Surr: Tetrachloro-m-xylene	107	70-130		%REC	1	9/17/2007 7:12:57 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	2,300,000 丁	90,000		μg/Kg-d ry	1000	9/24/2007 12:26:25 PM
Arsenic	14,000 T	900		μg/Kg-dry	100	9/21/2007 2:49:55 PM
Beryllium	ND 🗾	4,500		μg/Kg-dry	100	9/21/2007 2:49:55 PM
Chromium	2,100 T	9,000	J	μg/Kg-dry	100	9/21/2007 2:49:55 PM
Cobalt	13,000 🍑	4,500		μg/Kg-dry	100	9/21/2007 2:49:55 PM
Copper	1,500,000 🍱	9,000		μg/Kg-dry	100	9/21/2007 2:49:55 PM
Lead	64,000 🛣	9,000		μg/Kg-dry	100	9/21/2007 2:49:55 PM
Lithium	4,500	900		μg/Kg-dry	10	9/24/2007 6:08:09 PM
Manganese	370,000	9,000		μg/Kg-dry	100	9/21/2007 2:49:55 PM
Nickel	18,000 🍑	9,000		μg/Kg-dry	100	9/21/2007 2:49:55 PM
Silver	2,800 T	81		μg/Kg-dry	10	9/19/2007 7:46:45 PM
Strontium	ND	230,000		μg/Kg-dry	100	9/21/2007 2:49:55 PM
Zinc	93,000	9,000		μg/Kg-dry	100	9/21/2007 2:49:55 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	500	24		μg/Kg-dry	1	9/18/2007 3:37:39 PM
PERCENT MOISTURE				D221	6	Analyst: JE
						- Knoll

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Not Detected at the Reporting Limit ND
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- Manual Integration used to determine area response M
- Reporting Detection Limit

Page 8 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/11/2007 4:49:00 PM

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-004

Matrix: SOIL

Client Sample ID MGPB-1

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D	2216	Analyst: JE
Percent Moisture	16	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 9 of 46

Analytical Report

(consolidated)

WO#:

Date Reported:

0709387 9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007 10:23:00 AM

Matrix: SOIL

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-005

Client Sample ID Mickelson B-6

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1221	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1232	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1242	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1248	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1254	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1260	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Aroclor 1262	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Total PCBs	ND	42		μg/Kg-dry	1	9/17/2007 7:53:34 PM
Surr: Decachlorobiphenyl	121	70-130		%REC	1	9/17/2007 7:53:34 PM
Surr: Tetrachloro-m-xylene	113	70-130		%REC	1	9/17/2007 7:53:34 PM
METALS, ICP/MS				SW602	0A	Analyst: AB
Aluminum	7,800,000	79,000		μg/Kg-dry	1000	9/24/2007 12:28:19 PM
Arsenic	14,000 J	790		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Berytlium	730 5	4,000	J	μg/Kg-dry	100	9/21/2007 2:52:21 PM
Chromium	2000,086	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Cobalt	16,000 🎞	4,000		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Copper	490,000 🎜	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Lead	25,000 T	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Lithium	4,000	790		μg/Kg-dry	10	9/24/2007 6:09:55 PM
Manganese	650,000	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Nickel	180,000 J	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Silver	510 .T	100		μg/Kg-dry	10	9/19/2007 7:48:37 PM
Strontium	ND	200,000		μg/Kg-dry	100	9/21/2007 2:52:21 PM
Zinc	43,000	7,900		μg/Kg-dry	100	9/21/2007 2:52:21 PM
MERCURY				SW747	1A	Analyst: AB
Mercury	15	15	J	μg/Kg-dry	1	9/18/2007 3:39:20 PM
PERCENT MOISTURE				D2210	6	Analyst: JE

Qualifiers:

- /X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
 - Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Η

Page 10 of 46

Analytical Report

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007 10:23:00 AM

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-005

Matrix: SOIL

Client Sample ID Mickelson B-6

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D	2216	Analyst: JE
Percent Moisture	21	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

Ε Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

Manual Integration used to determine area response Μ

Reporting Detection Limit RL

Page 11 of 46

Analytical Report

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007 2:42:00 PM

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-006

Matrix: SOIL

Client Sample ID H & Y Marina B-19

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	B2	Analyst: MB
Aroclor 1016	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1221	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1232	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1242	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1248	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1254	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1260	ND	36		μg/Kg-dry	1	9/17/2007 8:34:31 PM
Aroclor 1262	11	36	J	μg/Kg-dry	1	9/17/2007 8:34:31 PM
Total PCBs	11	36	j	μg/Kg-dry	1	9/17/2007 8:34:31 PM
Surr: Decachlorobiphenyl	105	70-130		%REC	1	9/17/2007 8:34:31 PM
Surr: Tetrachloro-m-xylene	94.9	70-130		%REC	1	9/17/2007 8:34:31 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	1,800,000 ブ	69,000		μg/Kg-dry	1000	9/24/2007 1:00:56 PM
Arsenic	30,000 🌫	690		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Beryllium	ND J	3,400		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Chromium	460,000 ح	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Cobalt	37,000 T	3,400		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Copper	470,000 3	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Lead	440,000 🍑	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Lithium	740	690		μg/Kg-dry	10	9/24/2007 6:16:08 PM
Manganese	5,500,000	69,000		μg/Kg-dry	1000	9/24/2007 4:03:20 PM
Nickel	250,000	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Silver	380 .5	89		μg/Kg-dry	10	9/19/2007 7:50:28 PM
Strontium	ND	170,000		μg/Kg-dry	100	9/21/2007 3:06:40 PM
Zinc	83,000	6,900		μg/Kg-dry	100	9/21/2007 3:06:40 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	9.9	27	J	μg/Kg-dry	1	9/18/2007 3:40:59 PM
PERCENT MOISTURE				D221	6	Analyst: JE
						Strobl 9

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Value above quantitation range
- J Analyte detected below quantitation limits
- Not Detected at the Reporting Limit ND
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- M Manual Integration used to determine area response
- Reporting Detection Limit RL

Page 12 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007 2:42:00 PM

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-006

Matrix: SOIL

Client Sample ID H & Y Marina B-19

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	8.9	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank 9(24(° †

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 13 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-007

Matrix: SOIL

Client Sample ID Gay S1-21

Analyses	Result	RÌL (Qual	Units	DF	Date Analyzed	
POLYCHLORINATED BIPHENYLS			SW8082			Analyst: MB	
Aroclor 1016	ND J	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM	
Aroclor 1221	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM	
Aroclor 1232	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM	
Aroclor 1242	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM	
Aroclor 1248	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM	
Aroclor 1254	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM	
Aroclor 1260	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM	
Aroclor 1262	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM	
Total PCBs	ND	34		μg/Kg-dry	1	9/17/2007 9:15:09 PM	
Surr: Decachlorobiphenyl	120	70-130		%REC	1	9/17/2007 9:15:09 PM	
Surr: Tetrachloro-m-xylene	108	70-130		%REC	1	9/17/2007 9:15:09 PM	
METALS, ICP/MS				SW602	0A	Analyst: AB2	
Aluminum	15,000,000 3	86,000		μg/Kg-dry	1000	9/24/2007 12:30:11 PM	
Arsenic	670 🛣	860	J	μg/Kg-dry	100	9/21/2007 3:52:05 PM	
Beryllium	ND 👅	4,300		μg/Kg-dry	100	9/21/2007 3:52:05 PM	
Chromium	19,000 🌫	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM	
Cobalt	مة 18,000 ما	4,300		μg/Kg-dry	100	9/21/2007 3:52:05 PM	
Copper	ت 1,400,000	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM	
Lead	1,500 J	8,600	J	μg/Kg-dry	100	9/21/2007 3:52:05 PM	
Lithium	5,100	860		μg/Kg-dry	10	9/24/2007 6:17:54 PM	
Manganese	300,000	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM	
Nickel	23,000	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM	
Silver	8005	88		μg/Kg-dry	10	9/19/2007 7:52:18 PM	
Strontium	ND	210,000		μg/Kg-dry	100	9/21/2007 3:52:05 PM	
Zinc	62,000	8,600		μg/Kg-dry	100	9/21/2007 3:52:05 PM	
MERCURY				SW747	1A	Analyst: AB2	
Mercury	5.5	18	J	μg/Kg-dry	1	9/18/2007 3:42:37 PM	
PERCENT MOISTURE				D2210	6	Analyst: JE	
PERCENT MOISTURE				D2210	6	Analyst: JE I (whl	

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 14 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-007

Matrix: SOIL

Client Sample ID Gay S1-21

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	1.7	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 15 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-008

Matrix: SOIL

Client Sample ID Lake Linden S2-8

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	B2	Analyst: MB
Aroclor 1016	NDゴ	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1221	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1232	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1242	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1248	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1254	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1260	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Aroclor 1262	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Total PCBs	ND	43		μg/Kg-dry	1	9/17/2007 9:55:59 PM
Surr: Decachlorobiphenyl	101	70-130		%REC	1	9/17/2007 9:55:59 PM
Surr: Tetrachloro-m-xylene	93.7	70-130		%REC	1	9/17/2007 9:55:59 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	11,000,000	110,000		μg/Kg-dry	1000	9/24/2007 12:32:04 PM
Arsenic	1,100 \$	1,100		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Beryllium	940 🏗	5,400		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Chromium	20,000 5	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Cobalt	14,000	5,400		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Copper	2,100,000 🍱	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Lead	6,900 T	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Lithium	6,000	1,100		μg/Kg-dry	10	9/24/2007 6:19:42 PM
Manganese	350,000	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Nickel	34.000 J	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Silver	1,300 5	120		μg/Kg-dry	10	9/19/2007 7:54:07 PM
Strontium	ND	270,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
Zinc	130,000	11,000		μg/Kg-dry	100	9/21/2007 3:54:31 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	29	12		µg/Kg-dry	1	9/18/2007 3:44:15 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
 - Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Η

Page 16 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-008

Matrix: SOIL

Client Sample ID Lake Linden S2-8

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D)2216	Analyst: JE
Percent Moisture	24	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 17 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-009

Client Sample ID TMS1-2

Matrix: SOIL

Analyses	Result	RL Q	ual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	NDJ	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1221	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1232	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1242	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1248	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Arocior 1254	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1260	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Aroclor 1262	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Total PCBs	ND	35		μg/Kg-dry	1	9/17/2007 10:36:34 PM
Surr: Decachlorobiphenyl	113	70-130		%REC	1	9/17/2007 10:36:34 PM
Surr: Tetrachloro-m-xylene	99.6	70-130		%REC	1	9/17/2007 10:36:34 PM
METALS, ICP/MS				SW602	0A	Analyst: AB;
Aluminum	19,000,000 丁	67,000		μg/Kg-dry	1000	9/24/2007 12:33:57 PM
Arsenic	350 J	670	J	μg/Kg-dry	100	9/21/2007 3:56:58 PM
Beryllium	ND 🎜	3,300		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Chromium	14,000 3	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Cobalt	15,000 🏲	3,300		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Copper	2,700,000	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Lead	8,000 5	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Lithium	7,100	670		μg/Kg-dry	10	9/24/2007 6:21:30 PM
Manganese	430,000	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Nickel	24,000 3	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Silver	1,200 T	64		μg/Kg-dry	10	9/19/2007 7:55:57 PM
Strontium	ND	170,000		μg/Kg-dry	100	9/21/2007 3:56:58 PM
Zinc	59,000	6,700		μg/Kg-dry	100	9/21/2007 3:56:58 PM
MERCURY				SW747	1 A	Analyst: AB
Mercury	38	13		μg/Kg-dry	1	9/18/2007 3:45:54 PM
PERCENT MOISTURE				D221	Б	Analyst: JE

Qualifiers:

- X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- (par
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 18 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-009

Matrix: SOIL

Client Sample ID TMS1-2

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	4.7	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 19 of 46

Analytical Report

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-010

Client Sample ID TMS1-5

Matrix: SOIL

ND J ND ND ND ND	37 37 37 37		SW8082 µg/Kg-dry µg/Kg-dry	1	Analyst: MB 9/18/2007 2:00:07 AM
ND ND ND ND	37 37				
ND ND ND	37		μg/Kg-dry		
ND ND				1	9/18/2007 2:00:07 AM
ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
			μg/Kg-dry	1	9/18/2007 2:00:07 AM
NID	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
ND	37		μg/Kg-dry	1	9/18/2007 2:00:07 AM
123	70-130		%REC	1	9/18/2007 2:00:07 AM
91.1	70-130		%REC	1	9/18/2007 2:00:07 AM
			SW6020A		Analyst: AB2
20,000,000	110,000		μg/Kg-dry	1000	9/24/2007 12:35:49 PM
9,800	1,100		μg/Kg-dry	100	9/21/2007 4:14:58 PM
580	5,400	J	μg/Kg-dry	100	9/21/2007 4:14:58 PM
20,000	11,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
21,000	5,400		μg/Kg-dry	100	9/21/2007 4:14:58 PM
9,100,000	110,000		μg/Kg-dry	1000	9/24/2007 2:19:52 PM
530,000	11,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
5,000	1,100		μg/Kg-dry	10	9/24/2007 6:32:08 PM
530,000	11,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
30,000	11,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
2,400	74		μg/Kg-dry	10	9/19/2007 6:45:02 PM
ND	270,000		μg/Kg-dry	100	9/21/2007 4:14:58 PM
100,000	11,000		µg/Kg-dry	100	9/21/2007 4:14:58 PM
			SW7471	A	Analyst: AB2
220	18		μg/Kg-dry	1	9/18/2007 3:56:32 PM
			D2216		Analyst: JE
	ND ND ND 123 91.1 20,000,000 9,800 580 20,000 21,000 9,100,000 530,000 5,000 530,000 30,000 2,400 ND 100,000	ND 37 123 70-130 91.1 70-130 20,000,000 110,000 9,800 1,100 580 5,400 20,000 11,000 21,000 5,400 9,100,000 110,000 530,000 11,000 530,000 11,000 530,000 11,000 30,000 11,000 2,400 74 ND 270,000 100,000 11,000	ND 37 123 70-130 91.1 70-130 20,000,000 110,000 9,800 1,100 580 5,400 J 20,000 11,000 21,000 5,400 9,100,000 110,000 530,000 11,000 530,000 11,000 530,000 11,000 30,000 11,000 30,000 11,000 2,400 74 ND 270,000 100,000 11,000	ND 37 μg/Kg-dry 123 70-130 %REC 91.1 70-130 %REC 91.1 70-130 μg/Kg-dry 9,800 1,100 μg/Kg-dry 20,000 11,000 μg/Kg-dry 21,000 5,400 μg/Kg-dry 9,100,000 110,000 μg/Kg-dry 9,100,000 110,000 μg/Kg-dry 530,000 11,000 μg/Kg-dry 5,000 1,100 μg/Kg-dry 530,000 11,000 μg/Kg-dry 100,000 μg/Kg-dry 2,400 74 μg/Kg-dry ND 270,000 μg/Kg-dry 100,000 11,000 μg/Kg-dry SW7471/	ND 37 μg/Kg-dry 1 123 70-130 %REC 1 91.1 70-130 %REC 1 91.1 70-130 μg/Kg-dry 100 9,800 1,100 μg/Kg-dry 100 580 5,400 J μg/Kg-dry 100 20,000 11,000 μg/Kg-dry 100 21,000 5,400 μg/Kg-dry 100 9,100,000 110,000 μg/Kg-dry 100 9,100,000 110,000 μg/Kg-dry 100 530,000 11,000 μg/Kg-dry 100 530,000 11,000 μg/Kg-dry 100 530,000 11,000 μg/Kg-dry 10 530,000 11,000 μg/Kg-dry 10 2,400 74 μg/Kg-dry 100 2,400 74 μg/Kg-dry 100 100,000 11,000 μg/Kg-dry 100 2,400 74 μg/Kg-dry 100 100,000 11,000 μg/Kg-dry 100

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η Manual Integration used to determine area response
- RLReporting Detection Limit

Page 20 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-010

Matrix: SOIL

Client Sample ID TMS1-5

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2:	216	Analyst: JE
Percent Moisture	10	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 21 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-011

Client Sample ID TMS2-2

Matrix: SOIL

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	82	Analyst: MB
Aroclor 1016	NDJ	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1221	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1232	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1242	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1248	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1254	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1260	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Aroclor 1262	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Total PCBs	ND	38	μg/Kg-dry	1	9/18/2007 2:40:35 AM
Surr: Decachlorobiphenyl	119	70-130	%REC	1	9/18/2007 2:40:35 AM
Surr: Tetrachloro-m-xylene	100	70-130	%REC	1	9/18/2007 2:40:35 AM
METALS, ICP/MS			SW602	0A	Analyst: AB2
Aluminum	27,000,000	86,000	μg/Kg-dry	1000	9/24/2007 12:37:42 PM
Arsenic	1,200	860	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Beryllium	ND	4,300	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Chromium	19,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Cobalt	25,000	4,300	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Copper	2,000,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Lead	7,300	8,600	J μg/Kg-dry	100	9/21/2007 4:22:13 PM
Lithium	6,300	860	μg/Kg-dry	10	9/24/2007 6:37:26 PM
Manganese	670,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Nickel	34,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Silver	1,400	100	μg/Kg-dry	10	9/19/2007 6:46:52 PM
Strontium	ND	210,000	μg/Kg-dry	100	9/21/2007 4:22:13 PM
Zinc	87,000	8,600	μg/Kg-dry	100	9/21/2007 4:22:13 PM
MERCURY			SW747	1A	Analyst: AB2
Mercury	44	16	μg/Kg-dry	1	9/18/2007 3:58:12 PM
PERCENT MOISTURE			D221	6	Analyst: JE
					Tkull

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 22 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-011

Matrix: SOIL

Client Sample ID TMS2-2

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE				D2216	Analyst: JE
Percent Moisture	14	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 23 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-012

0/0936/-012

Client Sample ID HubS1-12

Matrix: SOIL

Analyses	Result	RL Q	Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	2	Analyst: MB
Aroclor 1016	NDJ	35		μg/Kg-dry	1	9/18/2007 3:21:30 AM
Aroclor 1221	ND	35		μg/Kg-dry	1	9/18/2007 3:21:30 AM
Aroclor 1232	ND	35		μg/Kg-dry	1	9/18/2007 3:21:30 AM
Aroclor 1242	ND	35		µg/Kg-dry	1	9/18/2007 3:21:30 AM
Aroclor 1248	ND	35		µg/Kg-dry	1	9/18/2007 3:21:30 AM
Aroclor 1254	ND	35		μg/Kg-dry	1	9/18/2007 3:21:30 AM
Aroclor 1260	ND	35		μg/Kg-dry	1	9/18/2007 3:21:30 AM
Aroclor 1262	ND	35		μg/Kg-dry	1	9/18/2007 3:21:30 AM
Total PCBs	ND	35		μg/Kg-dry	1	9/18/2007 3:21:30 AM
Surr: Decachlorobiphenyl	118	70-130		%REC	1	9/18/2007 3:21:30 AM
Surr: Tetrachloro-m-xylene	108	70-130		%REC	1	9/18/2007 3:21:30 AM
METALS, ICP/MS				SW6020)A	Analyst: AE
Aluminum	15,000,000	90,000		μg/Kg-dry	1000	9/24/2007 12:39:34 PM
Arsenic	4,800	900		μg/Kg-dry	100	9/21/2007 4:24:38 PM
Beryllium	ND	4,500		µg/Kg-dry	100	9/21/2007 4:24:38 PM
Chromium	24,000	9,000		μg/Kg-dry	100	9/21/2007 4:24:38 PM
Cobalt	21,000	4,500		μg/Kg-dry	100	9/21/2007 4:24:38 PM
Copper	6,000,000	90,000		μg/Kg-dry	1000	9/25/2007 4:13:44 PM
Lead	11,000	9,000		μg/Kg-dry	100	9/21/2007 4:24:38 PM
Lithium	12,000	800		μg/Kg-dry	10	9/24/2007 6:39:13 PM
Manganese	320,000	9,000		μg/Kg-dry	100	9/21/2007 4:24:38 PM
Nickel	39,000	9,000		μg/Kg-dry	100	9/21/2007 4:24:38 PM
Silver	990	80		µg/Kg-dry	10	9/19/2007 6:48:42 PM
Strontium	ND	220,000		μg/Kg-dry	100	9/21/2007 4:24:38 PM
Zinc	95,000	9,000		μg/Kg-dry	100	9/21/2007 4:24:38 PM
MERCURY				SW747	1A	Analyst: AB
Mercury	3.6	16	J	μg/Kg-dry	1	9/18/2007 3:59:53 PM
PERCENT MOISTURE				D2216	3	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- ,
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 24 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-012

Matrix: SOIL

Client Sample ID HubS1-12

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE				D2216	Analyst: JE
Percent Moisture	5.0	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 25 of 46

Analytical Report

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-013

Matrix: SOIL

Client Sample ID MSS1-12

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW80	82	Analyst: MB
Aroclor 1016	NDS	42		μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1221	ND	42		μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1232	ND	42		µg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1242	ND	42		μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1248	ND	42		µg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1254	ND	42		µg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1260	ND	42		μg/Kg-dry	1	9/18/2007 4:01:59 AM
Aroclor 1262	ND	42		μg/Kg-dry	1	9/18/2007 4:01:59 AM
Total PCBs	ND	42		μg/Kg-dry	1	9/18/2007 4:01:59 AM
Surr: Decachlorobiphenyl	121	70-130		%REC	1	9/18/2007 4:01:59 AM
Surr: Tetrachloro-m-xylene	108	70-130		%REC	1	9/18/2007 4:01:59 AM
METALS, ICP/MS				SW6020A		Analyst: AB2
Aluminum	9,700,000	98,000		μg/Kg-dry	1000	9/24/2007 12:41:27 PM
Arsenic	ND	980		μg/Kg-dry	100	9/21/2007 4:27:04 PM
Beryllium	ND	4,900		μg/Kg-dry	100	9/21/2007 4:27:04 PM
Chromium	7,100	9,800	J	µg/Kg-dry	100	9/21/2007 4:27:04 PM
Cobalt	7,700	4,900		μg/Kg-dry	100	9/21/2007 4:27:04 PM
Copper	230,000	9,800		μg/Kg-dry	100	9/21/2007 4:27:04 PM
Lead	6,700	9,800	J	μg/Kg-dry	100	9/21/2007 4:27:04 PM
Lithium	3,100	980		μg/Kg-dry	10	9/24/2007 6:40:59 PM
Manganese	240,000	9,800		μg/Kg-dry	100	9/21/2007 4:27:04 PM
Nickel	14,000	9,800		μg/Kg-dry	100	9/21/2007 4:27:04 PM
Silver	370	99		µg/Kg-dry	10	9/19/2007 6:50:29 PM
Strontium	ND	250,000		μg/Kg-dry	100	9/21/2007 4:27:04 PM
Zinc	60,000	9,800		μg/Kg-dry	100	9/21/2007 4:27:04 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	22	19		μg/Kg-dry	1	9/18/2007 4:01:33 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- Value exceeds Maximum Contaminant Level */X
- E Value above quantitation range
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Manual Integration used to determine area response
- Reporting Detection Limit

Page 26 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-013

Matrix: SOIL

Client Sample ID MSS1-12

Analyses	Result	RL Qual Units	DF	Date Analyzed
PERCENT MOISTURE		D	2216	Analyst: JE
Percent Moisture	21	1.0 wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 27 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Matrix: SOIL

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-014

Client Sample ID MSS1-13

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	32	Analyst: MB
Aroclor 1016	NDS	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1221	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1232	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1242	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1248	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1254	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1260	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Aroclor 1262	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Total PCBs	ND	37	μg/Kg-dry	1	9/18/2007 4:42:28 AM
Surr: Decachlorobiphenyl	123	70-130	%REC	1	9/18/2007 4:42:28 AM
Surr: Tetrachloro-m-xylene	106	70-130	%REC	1	9/18/2007 4:42:28 AM
METALS, ICP/MS			SW602	0 A	Analyst: AB:
Aluminum	23,000,000	84,000	μg/Kg-dry	1000	9/24/2007 12:47:32 PM
Arsenic	8,600	840	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Beryllium	ND	4,200	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Chromium	18,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Cobalt	18,000	4,200	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Copper	2,500,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Lead	200,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Lithium	7,600	840	μg/Kg-dry	10	9/24/2007 6:26:49 PM
Manganese	550,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Nickel	31,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Silver	3,100	97	μg/Kg-dry	10	9/19/2007 6:52:17 PM
Strontium	ND	210,000	μg/Kg-dry	100	9/21/2007 4:07:42 PM
Zinc	170,000	8,400	μg/Kg-dry	100	9/21/2007 4:07:42 PM
MERCURY			SW747	1 A	Analyst: AB
Mercury	280	21	μg/Kg-dry	1	9/18/2007 4:03:15 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 28 of 46

Analytical Report

(consolidated)

WO#:

0709387

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/12/2007

Project:

Torch Lake AOC SA - 20405.016.002.0274.00

Lab ID:

0709387-014

Matrix: SOIL

Client Sample ID MSS1-13

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE				D2216	Analyst: JE
Percent Moisture	10	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 29 of 46

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709373

Polychlorinated Biphenyls by U.S. EPA Method 8082

1.

			<u>Date</u>	<u>Date</u>	<u>Date</u>
Samples	<u>Lab ID</u>	<u>Matrix</u>	Collected	Prepared	Analyzed
Gay B –XRF6	0709373-001	Soil	9/10/07	NP	9/18/07
Gay B –XRF11	0709373-002	Soil	9/10/07	NP	9/18/07
Gay B -XRF14	0709373-003	Soil	9/10/07	NP	9/18/07
Gay B –XRF21	0709373-004	Soil	9/10/07	NP	9/18/07
Gay B –XRF26	0709373-005	Soil	9/10/07	NP	9/18/07
MGB-TAR	0709373-006	Soil	9/10/07	NP	9/18/07
Calumet XRF 16	0709373-007	Soil	9/7/07	NP	9/18/07
Mason XRF 6	0709373-008	Soil	9/6/07	NP	9/18/07
Mineral XRF 11	0709373-009	Soil	9/7/07	NP	9/18/07
Mason XRF 10	0709373-010	Soil	9/6/07	NP	9/18/07
Mineral XRF 6	0709373-011	Soil	9/7/07	NP	9/18/07

NP – Not presented with the data package

2. Sample Receipt and Holding Times

The samples were received in good condition and were analyzed within the required holding time.

3. Blanks

Two method blanks were associated with these samples. Both method blanks were free of contamination.

4. Laboratory Control Samples

Two laboratory control sample audits were associated with these samples. The Aroclor-1016-5 recovery (155%) for the laboratory control sample associated with Lab Batch 8381 was outside the laboratory generated quality control limits. Qualify the Aroclor-1016 results in all samples except MGB-TAR as estimated (J/UJ).

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709373

Polychlorinated Biphenyls by U.S. EPA Method 8082

5. Matrix Spike/Matrix Spike Duplicate

A matrix spike/matrix spike duplicate audit was not performed on any samples from this set.

6. Surrogate Spike Recoveries

XKrobbe 9/24/07

The Decachlorobiphenyl surrogate spike recoveries for samples Gay B –XRF21 (131%), Gay B –XRF 26 (140%) and Calumet XRF 16 (499%) were outside the laboratory generated quality control limits. Oualify all PCB results in these samples as estimated (J/UJ).

All Tetrachloro-m-xylene surrogate spike recoveries for all samples were within the laboratory generated quality control limits.

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709373

Total Metals by U.S. EPA Methods 6020A and 7471A

1.

			<u>Date</u>	<u>Date</u>	<u>Date</u>
<u>Samples</u>	<u>Lab ID</u>	<u>Matrix</u>	<u>Collected</u>	Prepared	<u>Analyzed</u>
Gay $\overline{B - XRF}$ 6	0709373-001	Soil	9/10/07	NP	9/18; 9/19; 9/21;
					9/24
Gay B –XRF11	0709373-002	Soil	9/10/07	NP	9/18; 9/19; 9/21;
					9/24
Gay B -XRF14	0709373-003	Soil	9/10/07	NP	9/18; 9/19;
					9/21; 9/24
Gay B –XRF21	0709373-004	Soil	9/10/07	NP	9/18; 9/19; 9/21;
					9/24
Gay B –XRF26	0709373-005	Soil	9/10/07	NP	9/18; 9/19; 9/21;
					9/24
MGB-TAR	0709373-006	Soil	9/10/07	NP	9/18; 9/19; 9/21;
					9/24
Calumet XRF 16	0709373-007	Soil	9/7/07	NP	9/18; 9/19; 9/21;
					9/24; 9/25
Mason XRF 6	0709373-008	Soil	9/6/07	NP	9/18; 9/19; 9/21;
					9/24
Mineral XRF 11	0709373-009	Soil	9/7/07	NP	9/18; 9/19; 9/21;
					9/24
Mason XRF 10	0709373-010	Soil	9/6/07	NP	9/18; 9/19; 9/21;
					9/24
Mineral XRF 6	0709373-011	Soil	9/7/07	NP	9/18; 9/19; 9/21;
					9/24

NP = Not presented with the data package

2. Sample Receipt and Holding Times

The samples were received in good condition and were analyzed within the required holding time.

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709373

Total Metals by U.S. EPA Methods 6020A and 7471A

3. Blanks

All metal method blanks were free of contamination.

4. Laboratory Control Samples

The laboratory control sample recoveries for aluminum (0%), arsenic (0%), beryllium (0%), chromium (0%), cobalt (0%), copper (0%), lead (0%), nickel (0%) and silver (0%) in Lab Batch 8389 analyzed on 9/24/07 were outside the laboratory generated quality control limits. Qualify the aluminum results in all samples as estimated (J/UJ). Qualify the zinc results in samples Gay B –XRF 14 and Mineral XRF 6 as estimated (J/UJ).

5. Matrix Spike/Matrix Spike Duplicate

Sample Gay B – XRF 6 was used for the mercury matrix spike/matrix spike duplicate audit. The zinc matrix spike recovery (-33%) was outside the laboratory generated quality control limits. The zinc matrix spike/matrix spike duplicate relative percent difference value was outside the laboratory generated quality control limits. Qualify the zinc results in all samples as estimated (J/UJ).

Cyrich Krobl

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709373

Volatile Organic Compounds (VOCs) by U.S. EPA Method 8260B

1.

			<u>Date</u>	<u>Date</u>	<u>Date</u>
<u>Samples</u>	<u>Lab ID</u>	<u>Matrix</u>	Collected	Prepared	Analyzed
MCP-TAR	0709373-006	Soil	9/10/07	NA	9/22/07

2. Sample Receipt and Holding Times

The sample was received in good condition and was analyzed within the required holding time.

3. Blanks

The method blank associated with this sample contained acetone (320 ug/Kg) and dichloromethane (49 ug/Kg). This had no affect on the associated sample.

4. Laboratory Control Samples

The acetone (161%), bromomethane (217%), chloroethane (156%), hexachloroethane (61.2%), t-butyl alcohol (0%), tetrachloroethene (175%), and trichlorofluoromethane (39%) laboratory control sample recoveries were outside the laboratory generated quality control limits. Qualify these compounds in sample MCP-TAR as estimated (J/UJ).

5. Matrix Spike/Matrix Spike Duplicate

A matrix spike/matrix spike duplicate audit was not performed on this sample.

6. Surrogate Spike Recoveries

The dibromofluoromethane surrogate spike recovery (117%) was outside the laboratory generated quality control limits. Qualify all VOCs in sample MCP-TAR as estimated (J/UJ).

Linda Koroble

RTI Laboratories, Inc. Livonia, Michigan Order Number 0709373

Polynuclear Aromatic Hydrocarbons (PNAs) by U.S. EPA Method 8270C

1.

			<u>Date</u>	<u>Date</u>	<u>Date</u>
<u>Samples</u>	<u>Lab ID</u>	<u>Matrix</u>	Collected	Prepared	<u>Analyzed</u>
MCP-TAR	0709373-006	Soil	9/10/07	NA	9/20/07

2. Sample Receipt and Holding Times

The sample was received in good condition and was analyzed within the required holding time.

3. Blanks

The method blank associated with this sample was free of contamination.

4. Laboratory Control Samples

All laboratory control sample recoveries were within the laboratory generated quality control limits.

5. Matrix Spike/Matrix Spike Duplicate

A matrix spike/matrix spike duplicate audit was not performed on this sample.

6. Surrogate Spike Recoveries

Kinda Korbke

The 2,4,6-tribromophenol (0%) surrogate spike recovery was outside the laboratory generated quality control limits. This had no affect on sample MCP-TAR.

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-001

Matrix: SOIL

Client Sample ID Gay B - XRF6

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	82	Analyst: MB
Aroclor 1016	ND J	74	μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1221	ND	74	μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1232	ND	74	μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1242	ND	74	μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1248	ND	74	μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1254	ND	74	μg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1260	ND	74	µg/Kg-dry	1	9/18/2007 6:44:07 AM
Aroclor 1262	ND	74	μg/Kg-dry	1	9/18/2007 6:44:07 AM
Total PCBs	ND	74	μg/Kg-dry	1	9/18/2007 6:44:07 AM
Surr: Decachlorobiphenyl	127	70-130	%REC	1	9/18/2007 6:44:07 AM
Surr: Tetrachloro-m-xylene	110	70-130	%REC	1	9/18/2007 6:44:07 AM
METALS, ICP/MS			SW602	0A	Analyst: AB2
Aluminum	8,200,000	94,000	μg/Kg-dry	1000	9/24/2007 12:00:27 PM
Arsenic	350,000	940	μg/Kg-dry	100	9/21/2007 2:06:22 PM
Beryllium	520	4,700 J		100	9/21/2007 2:06:22 PM
Chromium	16,000	9,400	μg/Kg-dry	100	9/21/2007 2:06:22 PM
Cobalt	13,000	4,700	μg/Kg-dry	100	9/21/2007 2:06:22 PM
Copper	320,000,000	940,000	μg/Kg-dry	10000	9/24/2007 2:07:57 PM
Lead	290,000	9,400	μg/Kg-dry	100	9/21/2007 2:06:22 PM
Lithium	3,000	940	μg/Kg-dry	10	9/24/2007 5:33:25 PM
Manganese	270,000	9,400	μg/Kg-dry	100	9/21/2007 2:06:22 PM
Nickel	33,000	9,400	μg/Kg-dry	100	9/21/2007 2:06:22 PM
Silver	220,000	95	μg/Kg-dry	10	9/19/2007 6:57:23 PM
Strontium	ND	230,000	μg/Kg-dry	100	9/21/2007 2:06:22 PM
Zinc	180,000	9,400	μg/Kg-dry	100	9/21/2007 2:06:22 PM
MERCURY			SW747	1A	Analyst: AB2
Mercury	1,300	43	μg/Kg-dry	2	9/18/2007 4:18:22 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 2 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-001

Matrix: SOIL

Client Sample ID Gay B - XRF6

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE				D2216	Analyst: JE
Percent Moisture	11	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 3 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Matrix: SOIL

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-002

Client Sample ID Gav B - XRF11

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	32	Analyst: MB
Aroclor 1016	NDな	76	μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1221	ND	76	μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1232	ND	76	μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1242	ND	76	μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1248	ND	76	μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1254	ND	76	μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1260	ND	76	μg/Kg-dry	1	9/18/2007 7:25:00 AM
Aroclor 1262	ND	76	μg/Kg-dry	1	9/18/2007 7:25:00 AM
Total PCBs	ND	76	μg/Kg-dry	1	9/18/2007 7:25:00 AM
Surr: Decachlorobiphenyl	122	70-130	%REC	1	9/18/2007 7:25:00 AM
Surr: Tetrachloro-m-xylene	107	70-130	%REC	1	9/18/2007 7:25:00 AM
METALS, ICP/MS			SW602	0A	Analyst: AB
Aluminum	7,200,000 J	96,000	μg/Kg-dry	1000	9/24/2007 12:02:20 PM
Arsenic	670,000	960	μg/Kg-dry	100	9/21/2007 2:13:35 PM
Beryllium	800	4,800 J	μg/Kg-dry	100	9/21/2007 2:13:35 PM
Chromium	45,000	9,600	μg/Kg-dry	100	9/21/2007 2:13:35 PM
Cobalt	14,000	4,800	μg/Kg-dry	100	9/21/2007 2:13:35 PM
Copper	430,000,000	960,000	μg/Kg-dry	10000	9/24/2007 3:10:42 PM
Lead	82,000	9,600	μg/Kg-dry	100	9/21/2007 2:13:35 PM
Lithium	2,900	960	μg/Kg-dry	10	9/24/2007 5:38:42 PM
Manganese	200,000	9,600	μg/Kg-dry	100	9/21/2007 2:13:35 PM
Nickel	39,000	9,600	μg/Kg-dry	100	9/21/2007 2:13:35 PM
Silver	150,000	100	μg/Kg-dry	10	9/19/2007 7:02:23 PM
Strontium	ND	240,000	μg/Kg-dry	100	9/21/2007 2:13:35 PM
Zinc	97,00 I	9,600	μg/Kg-dry	100	9/21/2007 2:13:35 PM
MERCURY			SW747	1A	Analyst: AB
Mercury	630	16	μg/Kg-dry	1	9/18/2007 3:02:19 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 4 of 70

9/20/09

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-002

Matrix: SOIL

Client Sample ID Gay B - XRF11

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2	216	Analyst: JE
Percent Moisture	13	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 5 of 70

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Website: www.rtilab.com

Analytical Report

(consolidated)

WO#:

Date Reported:

0709373 9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-003

Matrix: SOIL

Client Sample ID Gay B - XRF14

Analyses	Result	RL Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW80	82	Analyst: MB
Aroclor 1016	ND J	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1221	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1232	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1242	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1248	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1254	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1260	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Aroclor 1262	ND	75	μg/Kg-dry	1 ·	9/18/2007 8:05:34 AM
Total PCBs	ND	75	μg/Kg-dry	1	9/18/2007 8:05:34 AM
Surr: Decachlorobiphenyl	118	70-130	%REC	1	9/18/2007 8:05:34 AM
Surr: Tetrachloro-m-xylene	104	70-130	%REC	1	9/18/2007 8:05:34 AM
METALS, ICP/MS			SW602	0A	Analyst: AB2
Aluminum	11,000,000	81,000	μg/Kg-dry	1000	9/24/2007 12:04:12 PM
Arsenic	58,000	810	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Beryllium	ND	4,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Chromium	61,000	8,100	µg/Kg-dry	100	9/21/2007 2:16:00 PM
Cobalt	12,000	4,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Copper	990,000	8,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Lead	850,000	8,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Lithium	5,000	810	μg/Kg-dry	10	9/24/2007 5:40:27 PM
Manganese	610,000	8,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Nickel	31,000	8,100	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Silver	940	100	μg/Kg-dry	10	9/19/2007 7:20:08 PM
Strontium	ND	200,000	μg/Kg-dry	100	9/21/2007 2:16:00 PM
Zinc	14,000,000	81,000	μg/Kg-dry	1000	9/24/2007 4:10:00 PM
MERCURY			SW747	1 A	Analyst: AB2
Mercury	26	21	μg/Kg-dry	1	9/18/2007 3:04:25 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- /X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 6 of 70

Analytical Report

(consolidated)

WO#: Date Reported: 0709373 9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-003

Matrix: SOIL

Client Sample ID Gay B - XRF14

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			С)2216	Analyst: JE
Percent Moisture	12	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 7 of 70

4 Grable 9

Analytical Report

WO#: Date Reported:

0709373 9/25/2007

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

CLIENT: Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-004

Client Sample ID Gay B - XRF21

Matrix: SOIL

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND J	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1221	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Arocior 1232	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aractor 1242	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1248	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1254	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1260	ND	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Aroclor 1262	ND ,	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Total PCBs	ND 🇸	80		μg/Kg-dry	1	9/18/2007 8:46:00 AM
Surr: Decachlorobiphenyl	131	70-130	S	%REC	1	9/18/2007 8:46:00 AM
Surr: Tetrachloro-m-xylene	106	70-130		%REC	1	9/18/2007 8:46:00 AM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	7,600,000 J	97,000		μg/Kg-dry	1000	9/24/2007 12:06:04 PM
Arsenic	12,000	970		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Beryllium	ND	4,800		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Chromium	35,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Cobalt	7,500	4,800		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Copper	650,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Lead	61,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Lithium	6,600	970		μg/Kg-dry	10	9/24/2007 5:42:14 PM
Manganese	250,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Nickel	13,000	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Silver	1,100	98		μg/Kg-dry	10	9/19/2007 7:21:59 PM
Strontium	ND	240,000		μg/Kg-dry	100	9/21/2007 2:18:26 PM
Zinc	100,000 🔰	9,700		μg/Kg-dry	100	9/21/2007 2:18:26 PM
MERCURY				SW747	1A	Analyst: AB2
Mercury	200	26		μg/Kg-dry	1	9/18/2007 3:06:04 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- Value above quantitation range Ε
- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- H Holding times for preparation or analysis exceeded
- Manual Integration used to determine area response M
- Reporting Detection Limit

Page 8 of 70

Analytical Report

(consolidated)

WO#: Date Reported: 0709373 9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-004

Matrix: SOIL

Client Sample ID Gay B - XRF21

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
PERCENT MOISTURE				D2216	Analyst: JE
Percent Moisture	18	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 9 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-005

Matrix: SOIL

Client Sample ID Gay B - XRF26

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	NDゴ	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1221	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1232	ND	97		µg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1242	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1248	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1254	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1260	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Aroclor 1262	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Total PCBs	ND	97		μg/Kg-dry	1	9/18/2007 2:11:05 PM
Surr: Decachlorobiphenyl	140	70-130	s	%REC	1	9/18/2007 2:11:05 PM
Surr: Tetrachloro-m-xylene	102	70-130		%REC	1	9/18/2007 2:11:05 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	6,700,000	110,000		μg/Kg-dry	1000	9/24/2007 12:07:57 PM
Arsenic	17,000	1,100		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Beryllium	ND	5,600		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Chromium	59,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Cobalt	17,000	5,600		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Copper	1,100,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Lead	310,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Lithium	3,900	1,100		μg/Kg-dry	10	9/24/2007 5:44:00 PM
Manganese	930,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Nickel	45,000	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Silver	1,200	130		μg/Kg-dry	10	9/19/2007 7:23:51 PM
Strontium	ND	280,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
Zinc	4,300,000 🔰	11,000		μg/Kg-dry	100	9/21/2007 2:20:51 PM
MERCURY				SW747	1 A	Analyst: AB2
Mercury	460	31		μg/Kg-dry	1	9/18/2007 3:11:07 PM
PERCENT MOISTURE				D2210	6	Analyst: JE

Qualifiers:

- X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 10 of 70

Analytical Report

(consolidated)

WO#:
Date Reported:

0709373 9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-005

Matrix: SOIL

Client Sample ID Gay B - XRF26

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE			D2:	216	Analyst: JE
Percent Moisture	32	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 11 of 70

Analytical Report

(consolidated)

WO#:
Date Reported:

0709373 9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Matrix: SOLID

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-006

Client Sample ID MGP-TAR

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW8	082	Analyst: MB
Aroclor 1016	NDS	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1221	ND	330		μ g /Kg	1	9/18/2007 12:08:49 PM
Aroclor 1232	ND	330		μ g /Kg	1	9/18/2007 12:08:49 PM
Aroclor 1242	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1248	ND	330		μ g /Kg	1	9/18/2007 12:08:49 PM
Aroclor 1254	ND	330		μ g /Kg	1	9/18/2007 12:08:49 PM
Aroclor 1260	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Aroclor 1262	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Total PCBs	ND	330		μg/Kg	1	9/18/2007 12:08:49 PM
Surr: Decachlorobiphenyl	85.1	70-130		%REC	1	9/18/2007 12:08:49 PM
Surr: Tetrachloro-m-xylene	98.7	70-130		%REC	1	9/18/2007 12:08:49 PM
METALS, ICP/MS			SW6020A			Analyst: AB2
Aluminum	720,000 ′	90,000		μg/Kg	1000	9/24/2007 12:55:14 PM
Arsenic	1,000	900		μg/Kg	100	9/21/2007 2:23:17 PM
Beryflium	ND	4,500		μg/Kg	100	9/21/2007 2:23:17 PM
Chromium	ND	9,000		μg/Kg	100	9/21/2007 2:23:17 PM
Cobalt	500	4,500	J	μg/Kg	100	9/21/2007 2:23:17 PM
Copper	350,000	9,000		μg/Kg	100	9/21/2007 2:23:17 PM
Lead	4,200	9,000	J	μg/Kg	100	9/21/2007 2:23:17 PM
Lithium	ND	900		μg/Kg	10	9/24/2007 5:45:47 PM
Manganese	16,000	9,000		μg/Kg	100	9/21/2007 2:23:17 PM
Nickel	1,500	9,000	J	μg/Kg	100	9/21/2007 2:23:17 PM
Silver	670	85		μg/Kg	10	9/19/2007 7:25:40 PM
Strontium	ND	230,000		μg/Kg	100	9/21/2007 2:23:17 PM
Zinc	7,900 5	9,000	J	μg/Kg	100	9/21/2007 2:23:17 PM
MERCURY				SW74	171A	Analyst: AB2
Mercury	30	25		μg/Kg	1	9/18/2007 3:12:47 PM
POLYNUCLEAR AROMATIC HYDROCARBONS				SW82	270C	Analyst: JW

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range

SEMI-VOLATILE ORGANIC COMPOUNDS

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 12 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Matrix: SOLID

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-006

Client Sample ID MGP-TAR

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
POLYNUCLEAR AROMATIC HYDRO SEMI-VOLATILE ORGANIC COMPO				SW82	:70C	Analyst: JW
2-Methylnaphthalene	3,600,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Acenaphthene	400,000	960,000	J	μg/Kg	200	9/20/2007 3:13:00 PM
Acenaphthylene	4,900,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Anthracene	3,200,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(a)anthracene	2,500,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(a)pyrene	2,400,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(b)fluoranthene	2,400,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(g,h,i)perylene	1,400,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Benzo(k)fluoranthene	1,100,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Chrysene	1,800,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Dibenz(a,h)anthracene	270,000	960,000	J	μg/Kg	200	9/20/2007 3:13:00 PM
Fluoranthene	7,400,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Fluorene	3,000,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Indeno(1,2,3-cd)pyrene	1,200,000	960,000		μ g /Kg	200	9/20/2007 3:13:00 PM
Naphthalene	21,000,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Phenanthrene	11,000,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Pyrene	7,900,000	960,000		μg/Kg	200	9/20/2007 3:13:00 PM
Surr: 2,4,6-Tribromophenol	0	25-93.9	\$	%REC	200	9/20/2007 3:13:00 PM
Surr: 2-Fluorobiphenyl	44.0	26-105		%REC	200	9/20/2007 3:13:00 PM
Surr: 2-Fluorophenol	36.0	25-120		%REC	200	9/20/2007 3:13:00 PM
Surr: Nitrobenzene-d5	32.0	30.1-104		%REC	200	9/20/2007 3:13:00 PM
Surr: Phenol-d5	44.0	25-118		%REC	200	9/20/2007 3:13:00 PM
Surr: Terphenyl-d14	68.0	27.1-115		%REC	200	9/20/2007 3:13:00 PM
VOLATILE ORGANIC COMPOUNDS	;			SW82	:60B	Analyst: MT
1,1,1,2-Tetrachloroethane	ND S	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1,1-Trichloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1,2,2-Tetrachloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1,2-Trichloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1.1-Dichloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1-Dichloroethene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,1-Dichloropropene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 13 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-006

0,02313 000

Matrix: SOLID

Client Sample ID MGP-TAR

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS				SW82	260B	Analyst: MT3
1,2,3-Trichlorobenzene	ND -	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2,3-Trichloropropane	ND	200,000		μg/Kg	200000	
1,2,3-Trimethylbenzene	92,000	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2,4-Trichlorobenzene	ND	1,000,000		μg/Kg	200000	
1,2,4-Trimethylbenzene	260,000	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2-Dibromo-3-chloropropane	ND	1,000,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2-Dichlorobenzene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2-Dichloroethane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,2-Dichloropropane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,3,5-Trimethylbenzene	100,000	200,000	J	μg/Kg	200000	9/22/2007 3:15:00 PM
1,3-Dichlorobenzene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,3-Dichloropropane	ND I	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
1,4-Dichlorobenzene	ND .	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
2,2-Dichloropropane	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
2-Chloroethyl vinyl ether	ND	2,000,000	1	μg/Kg	200000	9/22/2007 3:15:00 PM
2-Chlorotoluene	ND	200,000	•	μg/Kg	200000	9/22/2007 3:15:00 PM
2-Hexanone	ND	10,000,000	1	μg/Kg	200000	9/22/2007 3:15:00 PM
2-Methylnaphthalene	3,200,000	1,000,000	l	μg/Kg	200000	9/22/2007 3:15:00 PM
2-Nitropropane	ND	800,000	1	μg/Kg	200000	9/22/2007 3:15:00 PM
4-Chlorotoluene	ND	200,000	ı	μg/Kg	200000	9/22/2007 3:15:00 PM
Acetone	630,000	10,000,000	J	μg/Kg	200000	9/22/2007 3:15:00 PM
Acrylonitrile	ND	1,000,000)	μg/Kg	200000	9/22/2007 3:15:00 PM
Benzene	1,200,000	120,000	1	μg/Kg	200000	9/22/2007 3:15:00 PM
Bromobenzene	ND	200,000	1	μg/Kg	200000	9/22/2007 3:15:00 PM
Bromochloromethane	ND	200,000	l	μg/Kg	200000	9/22/2007 3:15:00 PM
Bromodichloromethane	ND	200,000	}	μg/Kg	200000	9/22/2007 3:15:00 PM
Bromoform	ND	200,000	•	μg/Kg	200000	9/22/2007 3:15:00 PM
Bromomethane	ND	1,000,000	1	μg/Kg	200000	9/22/2007 3:15:00 PM
Carbon disulfide	ND	1,000,000	1	μg/Kg	200000	
Carbon tetrachloride	ND	200,000)	μg/Kg	200000	9/22/2007 3:15:00 PM
Chlorobenzene	ND	200,000)	μg/Kg	200000	
Chloroethane	ND	1,000,000)	μg/Kg	200000	9/22/2007 3:15:00 PM
Chloroform	ND	200,000)	μg/Kg	200000	9/22/2007 3:15:00 PM
Chloromethane	ND	200,000)	µg/Kg	200000	9/22/2007 3:15:00 PM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 14 of 70

Analytical Report

(consolidated)

Date Analyzed

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-006

Client Sample ID MGP-TAR

Matrix: SOLID

DF

Analyses	Result	RL Qual Units

*					
VOLATILE ORGANIC COMPOUNDS			SW	8260B	Analyst: MT3
cis-1,2-Dichloroethene	ND (200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
cis-1,3-Dichloropropene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Dibromochloromethane	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Dibromomethane	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Dichlorodifluoromethane	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Dichloromethane	ND	1,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Diethyl ether	ND	1,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Ethyl methacrylate	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Ethylbenzene	80,000	200,000	J μg/Kg	200000	9/22/2007 3:15:00 PM
Ethylene dibromide	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Hexachlorobutadiene	ND	1,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Hexachloroethane	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Isopropyl ether	ND	1,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Isopropylbenzene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
m,p-Xylene	520,000	400,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Methyl ethyl ketone	ND	1,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Methyl lodide	ND	1,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Methyl isobutyl ketone	ND	2,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Methyl tert-butyl ether	ND	1,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Naphthalene	29,000,000	1,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
n-Butylbenzene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
n-Propylbenzene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
o-Xylene	210,000	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
p-Isopropyltoluene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
sec-Butylbenzene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Styrene	210,000	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
t-Butyl alcohol	ND	8,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
tert-Amyl Methyl Ether	ND	800,000	μg/Kg	200000	9/22/2007 3:15:00 PM
tert-Butyl Ethyl Ether	ND	1,000,000	μg/Kg	200000	9/22/2007 3:15:00 PM
tert-Butylbenzene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Tetrachloroethene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
Toluene	640,000	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
trans-1,2-Dichtoroethene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM
trans-1,3-Dichloropropene	ND	200,000	μg/Kg	200000	9/22/2007 3:15:00 PM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 15 of 70

Analytical Report

(consolidated)

WO#:

Date Reported: 9/25/2007

0709373

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/10/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-006

Matrix: SOLID

Client Sample ID MGP-TAR

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS				SW826	0B	Analyst: MT3
trans-1,4-Dichloro-2-butene	ND J	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Trichloroethene	ND	200,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Trichlorofluoromethane	ND	200,000		µg/Kg	200000	9/22/2007 3:15:00 PM
Vinyl chloride	ND	160,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Xylenes, Total	730,000 🗸	600,000		μg/Kg	200000	9/22/2007 3:15:00 PM
Surr: 4-Bromofluorobenzene	114	90-115		%REC	200000	9/22/2007 3:15:00 PM
Surr: Dibromofluoromethane	117	88.4-108	s	%REC	200000	9/22/2007 3:15:00 PM
Surr: Toluene-d8	109	90-112		%REC	200000	9/22/2007 3:15:00 PM
CYANIDE				SW901	2A	Analyst: JT
Cyanide, Total	3.5	0.12		mg/Kg	1	9/21/2007

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 16 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/7/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-007

Client Sample ID Calument XRF 16

Matrix: SOIL

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS	****			SW808	32	Analyst: MB
Aroclor 1016	ND J	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1221	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1232	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1242	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1248	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1254	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1260	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Aroclor 1262	ND	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Total PCBs	ND /	57		μg/Kg-dry	1	9/18/2007 2:51:43 PM
Surr: Decachlorobiphenyl	499 V	70-130	s	%REC	1	9/18/2007 2:51:43 PM
Surr: Tetrachloro-m-xylene	102	70-130		%REC	1	9/18/2007 2:51:43 PM
METALS, ICP/MS				SW602	0A	Analyst: AB2
Aluminum	13,000,000 🏅	140,000		μg/Kg-dry	1000	9/24/2007 12:09:49 PM
Arsenic	36,000	1,400		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Beryllium	1,600	6,800	J	μg/Kg-dry	100	9/21/2007 2:30:34 PM
Chromium	28,000	14,000	_	μg/Kg-dry	100	9/21/2007 2:30:34 PM
Cobalt	18,000	6,800		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Copper	10,000,000	140,000		μg/Kg-dry	1000	9/25/2007 4:11:17 PM
Lead	1,100,000	14,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Lithium	9,700	1,400		μg/Kg-dry	10	9/24/2007 5:54:00 PM
Manganese	740,000	14,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Nickel	49,000	14,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Silver	2,400	150		μg/Kg-dry	10	9/19/2007 7:27:28 PM
Strontium	ND	340,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
Zinc	420,000ゴ	14,000		μg/Kg-dry	100	9/21/2007 2:30:34 PM
MERCURY				SW747	'1A	Analyst: AB2
Mercury	230	43		μg/Kg-dry	1	9/18/2007 3:14:27 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 17 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/7/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-007

Matrix: SOIL

Client Sample ID Calument XRF 16

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PERCENT MOISTURE				D2216	Analyst: JE
Percent Moisture	42	1.0	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 18 of 70

Analytical Report

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/6/2007

Matrix: SOIL

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-008

Client Sample ID Mason XRF6

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	
POLYCHLORINATED BIPHENYLS				SW8082		Analyst: MB	
Aroclor 1016	NDS	39		μg/Kg-dry	1	9/18/2007 12:49:42 PM	
Aroclor 1221	ND	39		μg/Kg-dry	1	9/18/2007 12:49:42 PM	
Aroclor 1232	ND	39		µg/Kg-dry	1	9/18/2007 12:49:42 PM	
Aroclor 1242	ND	39		μg/Kg-dry	1	9/18/2007 12:49:42 PM	
Aroclor 1248	ND	39		μg/Kg-dry	1	9/18/2007 12:49:42 PM	
Aroclor 1254	ND	39		μg/Kg-dry	1	9/18/2007 12:49:42 PM	
Aroclor 1260	ND	39		μg/Kg-dry	1	9/18/2007 12:49:42 PM	
Aroclor 1262	ND	39		μg/Kg-dry	1	9/18/2007 12:49:42 PM	
Total PCBs	ND	39		μg/Kg-dry	1	9/18/2007 12:49:42 PM	
Surr: Decachlorobiphenyl	112	70-130		%REC	1	9/18/2007 12:49:42 PM	
Surr: Tetrachloro-m-xylene	99.7	70-130		%REC	1	9/18/2007 12:49:42 PM	
METALS, ICP/MS				SW602	0A	Analyst: AE	
Aluminum	16,000,0007	96,000		μg/Kg-dry	1000	9/24/2007 12:11:41 PM	
Arsenic	6,700	960		μg/Kg-dry	100	9/21/2007 2:33:00 PM	
Beryllium	750	4,800	J	μg/Kg-dry	100	9/21/2007 2:33:00 PM	
Chromium	8,200	9,600	J	μg/Kg-dry	100	9/21/2007 2:33:00 PM	
Cobalt	17,000	4,800		μg/Kg-dry	100	9/21/2007 2:33:00 PM	
Copper	1,900,000	9,600		μg/Kg-dry	100	9/21/2007 2:33:00 PM	
Lead	1,100,000	9,600		μg/Kg-dry	100	9/21/2007 2:33:00 PM	
Lithium	7,100	960		μg/Kg-dry	10	9/24/2007 5:55:48 PM	
Manganese	790,000	9,600		μg/Kg-dry	100	9/21/2007 2:33:00 PM	
Nickel	31,000	9,600		μg/Kg-dry	100	9/21/2007 2:33:00 PM	
Silver	5,300	100		μg/Kg-dry	10	9/19/2007 7:29:17 PM	
Strontium	ND	240,000		μg/Kg-dry	100	9/21/2007 2:33:00 PM	
Zinc	110,000ブ	9,600		μg/Kg-dry	100	9/21/2007 2:33:00 PM	
MERCURY				SW747	1A	Analyst: AE	
Mercury	510	28		μg/Kg-dry	1	9/18/2007 3:16:08 PM	

Qualifiers:

PERCENT MOISTURE

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- Analyte detected below quantitation limits
- Not Detected at the Reporting Limit ND
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Manual Integration used to determine area response M
- Reporting Detection Limit

D2216

Page 19 of 70

Analyst: JE

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/6/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-008

Matrix: SOIL

Client Sample ID Mason XRF6

Analyses	Result	lt RL Qual Units			Date Analyzed	
PERCENT MOISTURE			D2:	216	Analyst: JE	
Percent Moisture	14	1.0	wt%	1	9/17/2007 8:30:00 AM	

Jerole npulo

Qualifiers:

- X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 20 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/7/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-009

Client Sample ID Mineral XRF11

Matrix: SOIL

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS				SW808	32	Analyst: MB
Aroclor 1016	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1221	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1232	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1242	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1248	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1254	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1260	ND	68		μg/Kg-dry	1	9/18/2007 9:26:29 AM
Aroclor 1262	24	68	J	μg/Kg-dry	1	9/18/2007 9:26:29 AM
Total PCBs	24	68	J	μg/Kg-dry	1	9/18/2007 9:26:29 AM
Surr: Decachlorobiphenyl	94.9	70-130		%REC	1	9/18/2007 9:26:29 AM
Surr: Tetrachloro-m-xylene	84.3	70-130		%REC	1	9/18/2007 9:26:29 AM
METALS, ICP/MS				SW602	0 A	Analyst: AB
Aluminum	6,200,000 🌫	73,000		μg/Kg-dry	1000	9/24/2007 12:13:34 PM
Arsenic	52,000	730		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Beryllium	500	3,600	J	μg/Kg-dry	100	9/21/2007 2:35:26 PM
Chromium	6,900	7,300	J	μg/Kg-dry	100	9/21/2007 2:35:26 PM
Cobalt	6,900	3,600		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Copper	17,000,000	73,000		μg/Kg-dry	1000	9/24/2007 2:12:11 PM
Lead	280,000	7,300		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Lithium	4,700	730		μg/Kg-dry	10	9/24/2007 5:57:35 PM
Manganese	180,000	7,300		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Nickel	24,000	7,300		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Silver	5,000	90		μg/Kg-dry	10	9/19/2007 7:31:05 PM
Strontium	ND	180,000		μg/Kg-dry	100	9/21/2007 2:35:26 PM
Zinc	490,000 🗲	7,300		μg/Kg-dry	100	9/21/2007 2:35:26 PM
MERCURY				SW747	1A	Analyst: AB
Mercury	100	17		μg/Kg-dry	1	9/18/2007 3:17:47 PM
PERCENT MOISTURE				D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 21 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/7/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Matrix: SOIL

Lab ID:

0709373-009 Client Sample ID Mineral XRF11

Analyses	es Result RL Qual Units		DF	Date Analyzed	
PERCENT MOISTURE			D22	216	Analyst: JE
Percent Moisture	23	10	wt%	1	9/17/2007 8:30:00 AM

Qualifiers:

Value exceeds Maximum Contaminant Level

E Value above quantitation range

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Manual Integration used to determine area response М

Reporting Detection Limit

Page 22 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/6/2007

Matrix: SOIL

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-010

Client Sample ID Mason XRF10

Analyses	Result	RL Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	32	Analyst: MB
Aroclor 1016	ND 🕤	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1221	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1232	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1242	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1248	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1254	ND .	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1260	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Aroclor 1262	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Total PCBs	ND	35	μg/Kg-dry	1	9/18/2007 10:07:02 AM
Surr: Decachlorobiphenyl	130	70-130	%REC	1	9/18/2007 10:07:02 AM
Surr: Tetrachloro-m-xylene	104	70-130	%REC	1	9/18/2007 10:07:02 AM
METALS, ICP/MS			SW602	0A	Analyst: AB2
Aluminum	21,000,000	72,000	μg/Kg-dry	1000	9/24/2007 12:15:27 PM
Arsenic	1,700	720	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Beryllium	ND	3,600	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Chromium	10,000	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Cobalt	17,000	3,600	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Copper	19,000,000	72,000	μg/Kg-dry	1000	9/24/2007 2:14:06 PM
Lead	200,000	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Lithium	3,400	720	μg/Kg-dry	10	9/24/2007 5:59:21 PM
Manganese	520,000	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Nickel	32,000	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Silver	5,400	70	μg/Kg-dry	10	9/19/2007 7:32:54 PM
Strontium	ND	180,000	μg/Kg-dry	100	9/21/2007 2:37:51 PM
Zinc	110,000 🗸	7,200	μg/Kg-dry	100	9/21/2007 2:37:51 PM
MERCURY			SW747	1A	Analyst: AB2
Mercury	120	23	μg/Kg-dry	1	9/18/2007 3:19:24 PM
PERCENT MOISTURE			D221	6	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 23 of 70

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342

Analytical Report

(consolidated)

WO#:

Date Reported:

0709373 9/25/2007

Website: www.rtilab.com

Collection Date: 9/6/2007

CLIENT: Project:

Weston Solutions of Illinois, Inc.

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-010

Matrix: SOIL

Client Sample ID Mason XRF10

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
PERCENT MOISTURE			D2	216	Analyst: JE	
Percent Moisture	4.5	1.0	wt%	1	9/17/2007 8:30:00 AM	

I Karble 3

Qualifiers:

- X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 24 of 70

Analytical Report

(consolidated)

WO#:

0709373

Date Reported:

9/25/2007

CLIENT:

Weston Solutions of Illinois, Inc.

Collection Date: 9/7/2007

Project:

Torch Lake SA - 20405.016.002.0274.00

Lab ID:

0709373-011

Client Sample ID Mineral XRF6

Matrix: SOIL

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS			SW808	32	Analyst: MB
Aroclor 1016	NDS	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1221	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1232	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1242	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1248	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1254	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1260	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Aroclor 1262	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Total PCBs	ND	70	μg/Kg-dry	1	9/18/2007 1:30:34 PM
Surr: Decachlorobiphenyl	122	70-130	%REC	1	9/18/2007 1:30:34 PM
Surr: Tetrachloro-m-xylene	104	70-130	%REC	1	9/18/2007 1:30:34 PM
METALS, ICP/MS			SW602	0A	Analyst: AB
Aluminum	3,200,000	64,000	μg/Kg-dry	1000	9/24/2007 12:57:08 PM
Arsenic	230,000	640	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Beryllium	ND	3,200	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Chromium	56,000	6,400	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Cobalt	48,000	3,200	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Copper	44,000,000	640,000	μg/Kg-dry	10000	9/24/2007 3:12:37 PM
Lead	1,900,000	6,400	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Lithium	ND	640	μg/Kg-dry	10	9/24/2007 6:01:06 PM
Manganese	73,000	6,400	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Nickel	540,000	6,400	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Silver	9,000	87	μg/Kg-dry	10	9/19/2007 7:34:43 PM
Strontium	ND .	160,000	μg/Kg-dry	100	9/21/2007 2:40:16 PM
Zinc	5,400,000 🕤	64,000	μg/Kg-dry	1000	9/24/2007 4:01:23 PM
MERCURY			SW747	1 A	Analyst: AB
Mercury	22	14	μg/Kg-dry	1	9/18/2007 3:32:39 PM
PERCENT MOISTURE			D2216	3	Analyst: JE

Qualifiers:

- */X Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

Page 25 of 70

ATTACHMENT D

FORMER C&H LEACH PLANT, MDEQ SAMPLING LOCATIONS AND RESULTS THAT EXCEED RDCC

Attachment D-1 Results of Metals Analysis that Exceed RDCC in Samples Collected by MDEQ at AOI 19 - C and H Leach Plant August 9, 2007

				Ahmeek Regrind	Ahmeek Regrind	Ahmeek Regrind	Ahmeek Regrind	Ahmeek Regrind
			Sample Name	South	South #1	South #2	South #2	South #3
			Sampling Date	08/09/07	08/09/07	08/09/07	08/09/07	08/09/07
			Sampling Date Sample Type	Laboratory	XRF	XRF	XRF	XRF
	Dogulata	ry Criteria	Sample Type Sample Matrix	Sediment	Sediment	Sediment	Sediment	Sediment
	Regulato	ry Criteria	Sample Matrix	C&H Leach Plant,	C&H Leach	C&H Leach		C&H Leach Plant,
			Committee Name to and				C&H Leach	
			Sample Number/	Ahmeek Regrind	Plant, Ahmeek	Plant, Ahmeek	Plant, Ahmeek	Ahmeek Regrind
	Part 201	Part 201	Location	South	Regrind South	Regrind South	Regrind South	South
Parameter Parame	SDBL	RDCC	Units					
Metals								
Antimony		180	mg/Kg	37	205	141	61	127
Arsenic	5.8	7.6	mg/Kg	36	592	172	280	83
Barium	75	37,000	mg/Kg	1,300	0	0	0	0
Beryllium	NA	410	mg/Kg	8	NT	NT	NT	NT
Cadmium	1	550	mg/Kg	19	23	16	9.3	38
Chromium	18	790,000	mg/Kg	76	610	639	908	329
Cobalt	6.8	2,600	mg/Kg	19	1,621	621	4.1	436
Copper	32	20,000	mg/Kg	74,000	132,830	67,264	66,886	61,359
Iron	12,000	160,000	mg/Kg	63,000	280,923	109,343	123,230	121,800
Lead	21.0	400	mg/Kg	6,800	16,317	5,671	5,674	5,175
Manganese	440.0	25,000	mg/Kg	1,100	62	38	1,286	144
Molybdenum	NA	2,600	mg/Kg	45	28	10	30	24
Mercury	0.1	160.0	mg/Kg	7	340	132	178	75
Nickel	20	4,000	mg/Kg	89	1,527	648	714	659
Rubidium			mg/Kg	NT	144	40	47	46
Selenium	0.4	2,600	mg/Kg	6	92	47	48	30
Silver	1	2,500	mg/Kg	330	1,059	422	390	260
Strontium	NA	330,000	mg/Kg	NT	116	431	443	522
Thallium	NA	35	mg/Kg	<lod< th=""><th>NT</th><th>NT</th><th>NT</th><th>NT</th></lod<>	NT	NT	NT	NT
Tin			mg/Kg	NT	8,053	3,873	3,577	4,454
Titanium			mg/Kg	NT	6,950	6,006	4,572	5,586
Vanadium	NA	750	mg/Kg	42	NT	NT	NT	NT
Zinc	47	170,000	mg/Kg	1,300	5,142	2,464	3,333	2,328
Zirconium			mg/Kg	NT	281	94	98	23

Attachment D-1 Results of Metals Analysis that Exceed RDCC in Samples Collected by MDEQ at AOI 19 - C and H Leach Plant August 9, 2007

I .						
				A11 D	A11 D	A11 D
				_	Ahmeek Regrind	C
			Sample Name	#1	#2	#3
			Sampling Date	08/09/07	08/09/07	08/09/07
			Sample Type	XRF	XRF	XRF
	Regulator	y Criteria	Sample Matrix	Sediment	Sediment	Sediment
				C&H Leach	C&H Leach	C&H Leach
			Sample Number/	Plant, Ahmeek	Plant, Ahmeek	Plant, Ahmeek
	Part 201	Part 201	Location	Regrind South	Regrind South	Regrind South
Parameter	SDBL	RDCC	Units			
Metals						
Antimony		180	mg/Kg	25	466	85
Arsenic	5.8	7.6	mg/Kg	651	635	759
Barium	75	37,000	mg/Kg	0	0	0
Beryllium	NA	410	mg/Kg	NT	NT	NT
Cadmium	1	550	mg/Kg	5.5	56	137
Chromium	18	790,000	mg/Kg	631	1,154	660
Cobalt	6.8	2,600	mg/Kg	1,253	1,348	1,080
Copper	32	20,000	mg/Kg	76,900	65,157	57,160
Iron	12,000	160,000	mg/Kg	27,123	23,852	28,836
Lead	21.0	400	mg/Kg	24,323	25,766	28,724
Manganese	440.0	25,000	mg/Kg	817	1,176	547
Molybdenum	NA	2,600	mg/Kg	10	7.2	11
Mercury	0.1	160.0	mg/Kg	195	170	85
Nickel	20	4,000	mg/Kg	403	314	150
Rubidium			mg/Kg	37	14	20
Selenium	0.4	2,600	mg/Kg	59	81	72
Silver	1	2,500	mg/Kg	193	585	287
Strontium	NA	330,000	mg/Kg	151	139	221
Thallium	NA	35	mg/Kg	NT	NT	NT
Tin			mg/Kg	26,413	27,016	26,540
Titanium			mg/Kg	4,856	6,027	6,610
Vanadium	NA	750	mg/Kg	NT	NT	NT
Zinc	47	170,000	mg/Kg	10,226	11,211	10,337
Zirconium			mg/Kg	188	174	167

Attachment D-1 Results of Metals Analysis that Exceed RDCC in Samples Collected by MDEQ at AOI 19 - C and H Leach Plant August 9, 2007

NOTES:

Results in shaded boxes exceed the MDEQ Part 201 Residential Direct Contact Criteria.

LOD - Level of Detection for the Innov-X XRF Instrument

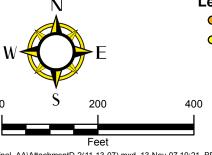
MDEQ - Michigan Department of Environmental Quality

mg/Kg – Milligrams per kilogram. Laboratory sample results are on a dry weight basis.

NT - analyte was not tested

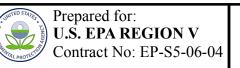
Part 201-RDCC - MDEQ Part 201 Residential Direct Contact Criteria

Part 201-SDBL - MDEQ Part 201 Statewide Default Background Level


XRF – X-Ray Fluorescence

"--" – Not listed in MDEQ Part 201 Tables

< – Less than



- MDEQ XRF Soil Sample
- MDEQ Laboratory Soil Sample
- Soil Results Shown Exceed Part 201 Residential Direct Contact Criteria (RDCC)
- Sampling Locations are Approximate
- MDEQ: Michigan Department of Environmental
- mg/Kg: milligrams per kilogram

Source of Imagery: ESRI ArcGIS Map Service (c) 2007 Date of Photography: 06/21/2005

TDD No.: S05-0002-0708-020 DCN: 274-2A-ABDT

WESTON SOLUTIONS, INC 2501 Jolly Road, Suite 100 Okemos, Michigan

Attachment D-2

AOI No. 19 FORMER C&H LEACH PLANT MDEQ SAMPLING LOCATIONS AND RESULTS KEWEENAW PENINSULA, MICHIGAN October 2007

Feet - XRF: X-Ray Flouresence File: \\FSOMI01\GIS\GIS_Projects\Lake_Linden\mxds\Final_AA\AttachmentD-2(11-13-07).mxd, 13-Nov-07 10:21, BROWNK

ATTACHMENT E LAKE LINDEN U.S. EPA EMERGENCY RESPONSE DATA

Summary of Analytical Results of Clayey Material Collected by START

${\bf Lake\ Linden\ Emergency\ Response\ Site}$

${\bf Lake\ Linden,\ Houghton\ County,\ Michigan}$

July 26, 2007

			Sample Name		LLV-Sediment1	LLV-Sediment2
			Sampling Date		07/26/07	07/26/07
			Sample Matrix		Soil	Soil
					LLV Shoreline,	LLV Shoreline, Grid#12,
			Sample Number/		Grid#12, 0-3"	0-3" (Clayey/silt
	Part 201	Part 201	Location		(Clayey material)	material)
Parameter	SDBL	RDCC	Units	Test Method		
Metals and Cyanide						
Cyanide (total)	0.39	12	mg/Kg-dry	EPA 335.2/9012B	< 0.20	< 0.20
Aluminum	6,900	50,000	mg/Kg-dry	EPA 6010B	5,800	7,800
Barium	75	37,000	mg/Kg-dry	EPA 6010B	140,000	350
Beryllium	NA	410	mg/Kg-dry	EPA 6010B	8.5	1.0
Cadmium	1	550	mg/Kg-dry	EPA 6010B	120	4.2
Calcium			mg/Kg-dry	EPA 6010B	22,000	6,600
Chromium	18	790,000	mg/Kg-dry	EPA 6010B	290	19
Cobalt	6.8	2,600	mg/Kg-dry	EPA 6010B	30	10
Copper	32	20,000	mg/Kg-dry	EPA 6010B	79,000	1,900
Iron	12,000	160,000	mg/Kg-dry	EPA 6010B	33,000	13,000
Magnesium	NA	1,000,000	mg/Kg-dry	EPA 6010B	5,100	7,000
Potassium			mg/Kg-dry	EPA 6010B	280	540
Sodium	NA	1,000,000	mg/Kg-dry	EPA 6010B	130	110
Vanadium	NA	750	mg/Kg-dry	EPA 6010B	6.1	28
Antimony	NA	180	mg/Kg-dry	SW6020	50	0.97
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	8.2	9.2
Lead	21	400	mg/Kg-dry	SW6020	80,000	2,100
Manganese	440	25,000	mg/Kg-dry	SW6020	220	170
Nickel	20	4,000	mg/Kg-dry	SW6020	160	32
Selenium	0.4	2,600	mg/Kg-dry	SW6020	9.1	0.53
Silver	1	2,500	mg/Kg-dry	SW6020	45	8.0
Thallium	NA	35	mg/Kg-dry	SW6020	< 0.50	< 0.50
Zinc	47	170,000	mg/Kg-dry	SW6020	13,000	390
Mercury	0.1	160.0	mg/Kg-dry	EPA 7471A	1.9	0.11

Summary of Analytical Results of Clayey Material Collected by START

Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 26, 2007

			Sample Name		LLV-Sediment1	LLV-Sediment2				
			Sampling Date		07/26/07	07/26/07				
			Sample Matrix		Soil	Soil				
	Part 201	Part 201	Sample Number/ Location		LLV Shoreline, Grid#12, 0-3" (Clayey material)	LLV Shoreline, Grid#12, 0-3" (Clayey/silt material)				
Parameter	SDBL	RDCC	Units	Test Method						
PCBs										
PCBs (Total)	NA	4,000	ug/Kg-dry	EPA 8082	1,131	136				
SVOCs	SVOCs									
Bis(2-ethylhexyl)phthalate	NA	2,800,000	ug/Kg-dry	EPA 8270C	340	<330				

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

" - inch

mg/Kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

START - Superfund Technical Assessment and Response Team

SVOC - semivolatile organic compound

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-1A	LLV-1B	LLV-2A	LLV-2B
			Sampling Date		07/30/07	07/30/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		LLV Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Part 201	Dowt 201	Location		Grid#1, 0-3"	Grid#1, 12-18"	Grid#2, 0-3"	Grid#2, 12-18"
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.5	3.1	< 2.4	< 2.5
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	3	2	65	11
Barium	75	37,000	mg/Kg-dry	SW6020	20	21	17	18
Copper	32	20,000	mg/Kg-dry	SW6020	1,900	7,100	1,100	5,100
Lead	21	400	mg/Kg-dry	SW6020	23	40	27	9

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START

Lake Linden Emergency Response Site

 ${\bf Lake\ Linden,\ Houghton\ County,\ Michigan}$

July 30- July 31, 2007

			Sample Name		LLV-3A	LLV-3B	LLV-4A	LLV-4B
			Sampling Date		07/30/07	07/30/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
	Part 201	Part 201	Sample Number/ Location		Shoreline, Grid#3, 0-3"	LLV Shoreline, Grid#3, 12-18"	Shoreline, Grid#4, 0-3"	LLV Shoreline, Grid#4, 12-18"
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.6	< 2.6	< 2.5	< 2.4
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	7	7	2	2
Barium	75	37,000	mg/Kg-dry	SW6020	12	10	21	19
Copper	32	20,000	mg/Kg-dry	SW6020	810	1,200	770	1,500
Lead	21	400	mg/Kg-dry	SW6020	19	14	16	8

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

$Lake\ Linden,\ Houghton\ County,\ Michigan$

July 30- July 31, 2007

			Sample Name		LLV-5A	LLV-5B	LLV-6A	LLV-6B
			Sampling Date		07/30/07	07/30/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		Shoreline,	LLV Shoreline,	Shoreline,	LLV Shoreline,
	Part 201	Dowt 201	Location		Grid#5, 0-3"	Grid#5, 12-18"	Grid#6, 0-3"	Grid#6, 12-18"
Parameter	SDBL	Part 201 RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.6	< 2.4	< 2.6	< 2.3
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	1.7	1.4	2.4	2.3
Barium	75	37,000	mg/Kg-dry	SW6020	17	16	14	11
Copper	32	20,000	mg/Kg-dry	SW6020	6,400	1,300	2,600	3,900
Lead	21	400	mg/Kg-dry	SW6020	20	20	35	13

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-7A	LLV-7B	LLV-7ADUP	LLV-7BDUP
			Sampling Date		07/30/07	07/30/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		LLV Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	D4 201	D4 201	Location		Grid#7, 0-3"	Grid#7, 12-18"	Grid#7, 0-3"	Grid#7, 12-18"
Parameter	Part 201 SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.5	< 2.6	< 2.4	< 2.4
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	3	2	2	3
Barium	75	37,000	mg/Kg-dry	SW6020	16	11	9.3	14
Copper	32	20,000	mg/Kg-dry	SW6020	1,000	560	470	1,100
Lead	21	400	mg/Kg-dry	SW6020	27	22	18	25

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START

Lake Linden Emergency Response Site Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-8A	LLV-8B	LLV-9A	LLV-9B
			Sampling Date		07/30/07	07/30/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Part 201	Dowt 201	Location		Grid#8, 0-3"	Grid#8, 12-18"	Grid#9, 0-3"	Grid#9, 12-18"
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.2	< 2.3	< 2.1	< 2.4
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	< 1.1	< 1.2	1.6	1.6
Barium	75	37,000	mg/Kg-dry	SW6020	7.2	7.4	11	12
Copper	32	20,000	mg/Kg-dry	SW6020	1,500	1,000	1,700	2,200
Lead	21	400	mg/Kg-dry	SW6020	11	14	59	36

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-10A	LLV-10B	LLV-11A	LLV-11B
			Sampling Date		07/30/07	07/30/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		LLV Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Dowt 201	Dowt 201	Location		Grid#10, 0-3"	Grid#10, 12-18"	Grid#11, 0-3"	Grid#11, 12-18"
Parameter	Part 201 SDBL	Part 201 RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.5	< 2.3	< 2.2	< 2.4
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	2.2	< 1.2	2.7	1.3
Barium	75	37,000	mg/Kg-dry	SW6020	14	8	43	41
Copper	32	20,000	mg/Kg-dry	SW6020	910	970	800	780
Lead	21	400	mg/Kg-dry	SW6020	74	18	79	16

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-13A	LLV-13B	LLV-14A	LLV-14B
			Sampling Date		07/30/07	07/30/07	07/31/07	07/31/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Part 201	Dowt 201	Location		Grid#13, 0-3"	Grid#13, 12-18"	Grid#14, 0-3"	Grid#14, 12-18"
Parameter	SDBL	RDCC	Units	Test Method				
	SDBL	RDCC	Units	1 est Methou				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.5	< 2.6	< 2.4	< 2.3
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	1.7	3.2	<1.2	11
Barium	75	37,000	mg/Kg-dry	SW6020	54	100	19	110
Copper	32	20,000	mg/Kg-dry	SW6020	300	1,100	72	1,500
Lead	21	400	mg/Kg-dry	SW6020	23	49	4.5	470

PCBs									
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7	

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

$Lake\ Linden,\ Houghton\ County,\ Michigan$

July 30- July 31, 2007

			Sample Name		LLV-15A	LLV-15B	LLV-16A	LLV-16B
			Sampling Date		07/31/07	07/31/07	07/31/07	07/31/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		LLV Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Part 201	Dowt 201	Location		Grid#15, 0-3"	Grid#15, 12-18"	Grid#16, 0-3"	Grid#16, 12-18"
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.3	< 2.4	< 2.3	< 2.5
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	< 1.2	2.6	< 1.2	1.6
Barium	75	37,000	mg/Kg-dry	SW6020	15	21	14	23
Copper	32	20,000	mg/Kg-dry	SW6020	130	590	160	380
Lead	21	400	mg/Kg-dry	SW6020	2.5	20	2.7	16

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-17A	LLV-17B	LLV-18A	LLV-18B
			Sampling Date		07/31/07	07/31/07	07/31/07	07/31/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Number/		LLV Shoreline,	LLV Shoreline,	Shoreline,	Shoreline,
	Part 201	Dow4 201	Location		Grid#17, 0-3"	Grid#17, 12-18"	Grid#18, 0-3"	Grid#18, 12-
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.4	< 2.5	< 2.2	< 2.4
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	2.2	2.2	2	1.2
Barium	75	37,000	mg/Kg-dry	SW6020	21	40	17	20
Copper	32	20,000	mg/Kg-dry	SW6020	390	440	290	930
Lead	21	400	mg/Kg-dry	SW6020	10	49	9.4	13

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-19A	LLV-19B	LLV-20A	LLV-20B
			Sampling Date		07/31/07	07/31/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	D4 201	D4 201	Location		Grid#19, 0-3"	Grid#19, 12-18"	Grid#20, 0-3"	Grid#20, 12-18"
Parameter	Part 201 SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.3	< 2.7	< 2.5	< 2.4
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	2.8	2.1	3.9	1.5
Barium	75	37,000	mg/Kg-dry	SW6020	19	25	28	23
Copper	32	20,000	mg/Kg-dry	SW6020	440	930	410	850
Lead	21	400	mg/Kg-dry	SW6020	4.7	39	9.7	4

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-21A	LLV-21B	LLV-22A	LLV-22B
			Sampling Date		07/30/07	07/30/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	D4 201	D4 201	Location		Grid#21, 0-3"	Grid#21, 12-18"	Grid#22, 0-3"	Grid#22, 12-18"
Parameter	SDBL	Part 201 RDCC	Units	Test Method				
Metals	<u> </u>							
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.3	< 2.5	< 2.3	< 2.4
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	10	5	2.3	1.7
Barium	75	37,000	mg/Kg-dry	SW6020	57	49	22	22
Copper	32	20,000	mg/Kg-dry	SW6020	3,200	760	580	580
Lead	21	400	mg/Kg-dry	SW6020	10	9.6	8.5	2.5

PCBs									
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7	

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

$Lake\ Linden,\ Houghton\ County,\ Michigan$

July 30- July 31, 2007

			Sample Name		LLV-23A	LLV-23B	LLV-24A	LLV-24B
			Sampling Date		07/30/07	07/30/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Dont 201	Part 201	Location		Grid#23, 0-3"	Grid#23, 12-18"	Grid#24, 0-3"	Grid#24, 12-18"
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.6	< 2.2	< 2.5	< 2.3
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	5	1.6	4.6	2.1
Barium	75	37,000	mg/Kg-dry	SW6020	66	27	80	23
Copper	32	20,000	mg/Kg-dry	SW6020	630	880	750	570
Lead	21	400	mg/Kg-dry	SW6020	15	3	5.6	3.7

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

$Lake\ Linden,\ Houghton\ County,\ Michigan$

July 30- July 31, 2007

			Sample Name		LLV-25A	LLV-25B	LLV-26A	LLV-26B
			Sampling Date		07/30/07	07/30/07	07/31/07	07/31/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Part 201	Dowt 201	Location		Grid#25, 0-3"	Grid#25, 12-18"	Grid#26, 0-3"	Grid#26, 12-18"
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2	< 2	< 1.9	< 2
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	5.9	1.3	3	1.4
Barium	75	37,000	mg/Kg-dry	SW6020	33	11	28	18
Copper	32	20,000	mg/Kg-dry	SW6020	100	1,200	60	1,100
Lead	21	400	mg/Kg-dry	SW6020	9.3	2.2	6.5	29

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-27A	LLV-27B	LLV-28A	LLV-28B
			Sampling Date		07/31/07	07/31/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Dow4 201	Dow4 201	Location		Grid#27, 0-3"	Grid#27, 12-18"	Grid#28, 0-3"	Grid#28, 12-18"
Parameter	SDBL	Part 201 RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2	< 2	< 1.9	< 2.2
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	14	1.5	1.6	1.5
Barium	75	37,000	mg/Kg-dry	SW6020	110	25	16	19
Copper	32	20,000	mg/Kg-dry	SW6020	2,000	730	33	170
Lead	21	400	mg/Kg-dry	SW6020	110	43	1.6	3

PCBs									
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7	

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-29A	LLV-29B	LLV-30A	LLV-30B
			Sampling Date		07/31/07	07/31/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Dowt 201	Dow4 201	Location		Grid#29, 0-3"	Grid#29, 12-18"	Grid#30, 0-3"	Grid#30, 12-18"
Parameter	SDBL	Part 201 RDCC	Units	Test Method				
1 al allictel	SDDL	RDCC	Cints	1 est Methou				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2	< 2.1	< 2	< 2.2
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	2.6	1.1	1.5	1.4
Barium	75	37,000	mg/Kg-dry	SW6020	34	23	16	12
Copper	32	20,000	mg/Kg-dry	SW6020	92	820	570	580
Lead	21	400	mg/Kg-dry	SW6020	7.6	2.6	10	2.6

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-31A	LLV-31B	LLV-32A	LLV-32B
			Sampling Date		07/31/07	07/31/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	D4 201	D4 201	Location		Grid#31, 0-3"	Grid#31, 12-18"	Grid#32, 0-3"	Grid#32, 12-18"
Parameter	Part 201 SDBL	RDCC	Units	Test Method				
	SDBL	RDCC	Cints	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2	< 2.1	< 2	< 2.3
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	1.1	1.3	< 0.99	2.4
Barium	75	37,000	mg/Kg-dry	SW6020	18	16	17	120
Copper	32	20,000	mg/Kg-dry	SW6020	200	490	140	1,100
Lead	21	400	mg/Kg-dry	SW6020	3.8	2.3	0.94	4.2

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-13ADUP	LLV-13BDUP	LLV-28ADUP	LLV-28BDUP
			Sampling Date		07/30/07	07/30/07	07/30/07	07/30/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		Shoreline,	LLV Shoreline,	LLV Shoreline,	LLV Shoreline,
	Dowt 201	Dow4 201	Location		Grid#13, 0-3"	Grid#13, 12-18"	Grid#28, 0-3"	Grid#28, 12-18"
Parameter	Part 201 SDBL	RDCC	Units	Test Method				
1 al allietei	SDBL	KDCC	Units	1 est Methou				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2	< 2.1	< 2.1	< 2.2
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	2.6	1.1	2	1.5
Barium	75	37,000	mg/Kg-dry	SW6020	34	23	18	19
Copper	32	20,000	mg/Kg-dry	SW6020	92	820	39	250
Lead	21	400	mg/Kg-dry	SW6020	7.6	2.6	1.9	4.7

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Laboratory Analytical Results For Soil/Sediment Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 30- July 31, 2007

			Sample Name		LLV-15ADUP	LLV-15BDUP	LLV-22ADUP	LLV-22BDUP
			Sampling Date		07/31/07	07/31/07	07/31/07	07/31/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/		LLV Shoreline,	LLV Shoreline,	Shoreline,	LLV Shoreline,
	Dove 201	Dowt 201	Location		Grid#15, 0-3"	Grid#15, 12-18"	Grid#22, 0-3"	Grid#22, 12-18"
Parameter	Part 201 SDBL	RDCC	Units	Test Method				
	SDDE	RDCC	Circs	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 2.3	< 2.4	< 2.4	< 2.3
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	< 1.2	3.1	1.9	1.6
Barium	75	37,000	mg/Kg-dry	SW6020	13	22	21	18
Copper	32	20,000	mg/Kg-dry	SW6020	130	550	720	570
Lead	21	400	mg/Kg-dry	SW6020	2.4	27	3.9	2.2

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.7	< 0.7	< 0.7	< 0.7

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

< - less than listed method limit of detection

mg/kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Part 201-RDCC - Part 201 Residential Direct Contact Criteria

PCB - polychlorinated biphenyl

[&]quot; - inch

Summary of Analytical Results for Surface Water Samples Collected by START Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

July 26, 2007

	Sample Name	LLV Beach 1	LLV Creek 1					
	Sampling Date	7/26/2007	7/26/2007					
	Sample Matrix	Water	Water		G 0 TT	D 1201 G	D . 201	
	Sample Number/		LLV Creek,		Surface Water	Part 201 Generic	Part 201	D (201 D) 1 () 1
	Location	LLV Beach	N d CD 1	T: 101 :	Human Drinking	Groundwater/Surface		Part 201 Residential
D	Units	EE v Beach		rmai Cin ome		Water Interface (GSI)	Contact	Drinking Water
Parameter	Units			Value (FCV)	(HDV)	Criteria	Criteria	Criteria
Metals								
Barium	μg/L	270	530	190	1,900	190 (G, X)	1.4E+7	2,000 (A)
Beryllium	μg/L	ND	ND	0.034	160	0.34 (G)	2.9E+5	4.0 (A)
Cadmium	μg/L	ND	1.2	1.3	3.0	1.3 (G, X)	1.9E+5	5.0 (A)
Chromium (III)	μg/L	ND	14	39	120	39 (G, X)	2.9E+8	100 (A)
Copper	μg/L	240	990:	4.6	790	4.6 (G)	7.4E+6	1,000 (E)/HB = 1,400
Lead	μg/L	44	550	4.4	14	4.4 (G, X)	ID	4.0 (L)
Manganese	μg/L	180	720	980	3,600	980 (G, X)	9.1E+6	50 (E)/HB = 860
Nickel	μg/L	ND	ND	27	2,600	27 (G)	7.4E+7	100 (A)
Zinc	μg/L	ND	110	61	4,500	61 (G)	1.1E+8	2,400
Calcium	μg/L	57,000	33,000	NA	NA	NA	NA	NA
Iron	μg/L	2,800	14,000	NA	NA	NA	5.8E+7	300 (E)/HB = 2,000
Magnesium	μg/L	5,000	7,000	NA	NA	NA	1.0E+9(D)	4.00E+05
Sodium	μg/L	7,700	14,000	NA	NA	NA	1.0E+9(D)	1.20E+05
Aluminum	μg/L	3,100	3,900	NA	NA	NA	6.4E+7	50 (V)
Antimony	μg/L	ND	3	240	1.7	2 (X)	68,000	6.0 (A)
Arsenic	μg/L	9.50	20	150	50	50 (X)	4,300	10 (A)
Cobalt	μg/L	ND	ND	100	NA	100	2.4E+6	40
Potassium	μg/L	1,600	3,800	NA	NA	NA	NA	NA
Selenium	μg/L	ND	ND	5	NA	5	9.7E+5	50 (A)
Silver	μg/L	0.88	4.6	0.06	130	0.2 (M); 0.06	1.5E+6	34
Thallium	μg/L	ND	ND	7.2	1.2	2.0 (M, X)	13,000	2.0 (A)
Vanadium	μg/L	7.80	20	12	220	12	9.7E+5	4.5
Mercury	μg/L	ND	ND	0.77	0.0018	0.0013	56 (S)	2.0 (A)
рН	s.u.	7.55	7.72	NA	NA	6.5-9.0	NA	6.5-8.5 (E)
Cyanide	μg/L	ND	ND	5.2	600	5.2	57,000	200 (A)

Summary of Analytical Results for Surface Water Samples Collected by START Lake Linden Emergency Response Site Lake Linden, Houghton County, Michigan July 26, 2007

Notes: $\mu g/L$ - micrograms per liter

Metal results are for total metals (unfiltered) HB - Health Based

- Shaded results exceed applicable GSI criteria LLV - Lake Linden

- Bold font results exceed Residential Drinking Water Criteria ND - below detection limit

- Pattern results exceed Rule 57 Human Drinking Water Value START - Superfund Technical Assessment and Response Team

Part 201 Criteria Footnotes:

s.u. - standard units

- A Criterion is the state of Michigan drinking water standard established pursuant to Section 5 of 1976 pa 399, mcl 325.1005
- D Calculated criterion exceeds 100 percent, hence it is reduced to 100 percent or 1.0E+9 parts per billion (ppb).
- E Criterion is the aesthetic drinking water value, as required by Section 20120a(5) of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amende
- G The GSI criteria is dependent on the hardness of the receiving surface water body. A hardness value of 46 mg/L calcium carbonate (CaCO3) was used for this data based on previously-used values for Torch Lake.

assumptions specified in pathway-specific rules. The generic residential drinking water criterion of 4 ug/L is linked to the generic residential soil direct contact criterion of 400 mg/kg.

- M Calculated criterion is below the analytical target detection limit, therefore, the criterion defaults to the targ
- S Criterion defaults to the hazardous substance-specific water solubility limit
- X The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source. For a groundwater discharge to the Great Lakes and their connecting waters or discharge in close proximity to a water supply intake in inland surface waters, the generic GSI criterion shall be the surface water human drinking water value (HDV) listed in the table in this footnote, except for those HDV indicated with an asterisk. For HDV with an asterisk, the generic GSI criterion Note: the HDV was applied for this data as Torch Lake is considered a connecting water to a Great Lake (Lake Superior).

Final chronic value (FCV) = the level of a substance or a mixture of substances that does not allow injurious or debilitating effects in an aquatic organism resulting from repeated long-term exposure to a substance relative to the organisms lifespan

Summary of Laboratory Analytical Results For Sediment Samples

Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

August 7, 2007

			Sample Name		LLV-MP1-01	LLV-MP2-01	LLV-MP3-01	LLV-MP4-01
			Sampling Date		08/07/07	08/07/07	08/07/07	08/07/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/					
			Location		LLV-MP1	LLV-MP2	LLV-MP3	LLV-MP4
	Part 201	Part 201						
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	< 5.2	6	<4.7	< 5.2
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	<2.6	<2.9	<2.3	< 2.6
Barium	75	37,000	mg/Kg-dry	SW6020	87	930	29	25
Copper	32	20,000	mg/Kg-dry	SW6020	360	1,700	200	340
Lead	21.0	400	mg/Kg-dry	SW6020	100	1,300	40	21

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.77	0.58	< 0.70	< 0.77

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

All samples collected using a Ponar dredge deployed from the RV Mudpuppy.

< - less than listed method limit of detection

mg/Kg-dry - milligrams per kilogram dry weight

NA - Not available

Part 201-SDBL - Part 201 Statewide Default Background Level

Summary of Laboratory Analytical Results For Sediment Samples

Lake Linden Emergency Response Site

Lake Linden, Houghton County, Michigan

August 7, 2007

			Sample Name		LLV-MP5-01	LLV-MP6-01	LLV-MP7-01	LLV-MP8-01
			Sampling Date		08/07/07	08/07/07	08/07/07	08/07/07
			Sample Matrix		Soil	Soil	Soil	Soil
			Sample Number/					
			Location		LLV-MP5	LLV-MP6	LLV-MP7	LLV-MP8
		Part 201						
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	<4.8	<6.2	<5.0	<7.4
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	<2.4	<3.1	<2.5	4.1
Barium	75	37,000	mg/Kg-dry	SW6020	170	120	32	150
Copper	32	20,000	mg/Kg-dry	SW6020	310	330	100	540
Lead	21.0	400	mg/Kg-dry	SW6020	130	110	11	68

PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.70	< 0.91	< 0.77	<1.05

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.

All samples collected using a Ponar dredge deployed from the RV Mudpuppy.

< - less than listed method limit of detection

mg/Kg-dry - milligrams per kilogram dry weight Part 201-RDCC - Part 201 Residential Direct Contact Criteria

NA - Not available PCB - polychlorinated biphenyl

Part 201-SDBL - Part 201 Statewide Default Background Level START - Superfund Technical Assessment and Response Team

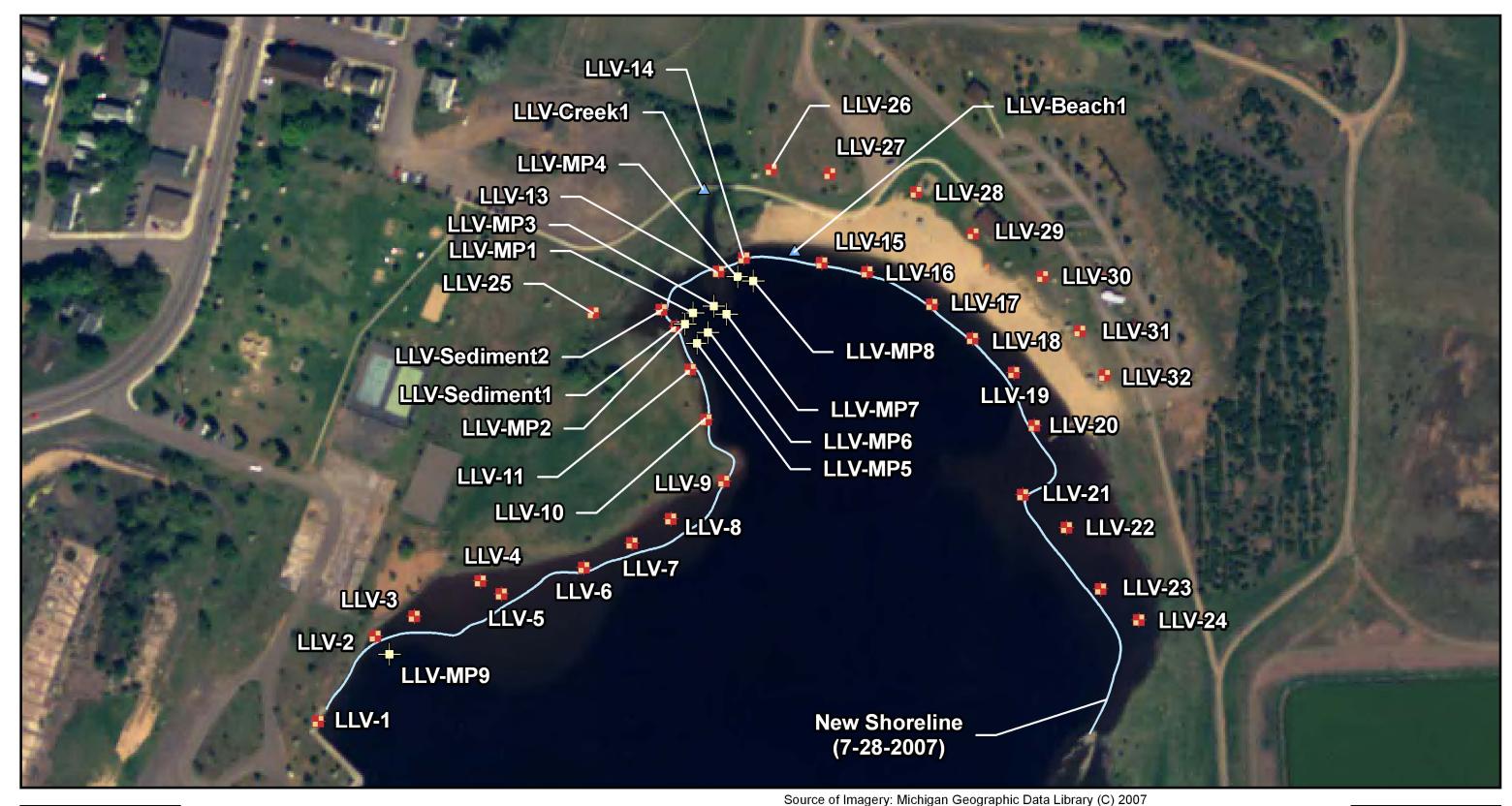
Attachment E-1d Summary of Laboratory Analytical Results For Sediment Samples Lake Linden Emergency Response Site Lake Linden, Houghton County, Michigan August 7, 2007

r								
			Sample Name		LLV-MP-DUP-01			
			Sampling Date		08/07/07			
			Sample Matrix		Soil			
			Sample Number/					
			Location		LLV-MP1			
	Part 201	Part 201						
Parameter	SDBL	RDCC	Units	Test Method				
Metals								
Antimony	NA	180	mg/Kg-dry	SW6020	<4.9			
Arsenic	5.8	7.6	mg/Kg-dry	SW6020	<2.4			
Barium	75	37,000	mg/Kg-dry	SW6020	66			
Copper	32	20,000	mg/Kg-dry	SW6020	270			
Lead	21.0	400	mg/Kg-dry	SW6020	97			

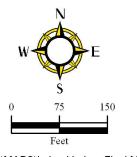
PCBs								
PCBs (Total)	NA	4	mg/Kg-dry	SW8082	< 0.70			

NOTES:

Results in shaded boxes exceed the Part 201 Residential Direct Contact Criteria.


All samples collected using a Ponar dredge deployed from the RV Mudpuppy.

< - less than listed method limit of detection


mg/Kg-dry - milligrams per kilogram dry weight Part 201-RDCC - Part 201 Residential Direct Contact Criteria

NA - Not available PCB - polychlorinated biphenyl

Part 201-SDBL - Part 201 Statewide Default Background Level START - Superfund Technical Assessment and Response Team

🖒 Mud Puppy Sampling Location

Soil Sampling Location

△ Water Sampling Location

Shoreline (7-28-2007)

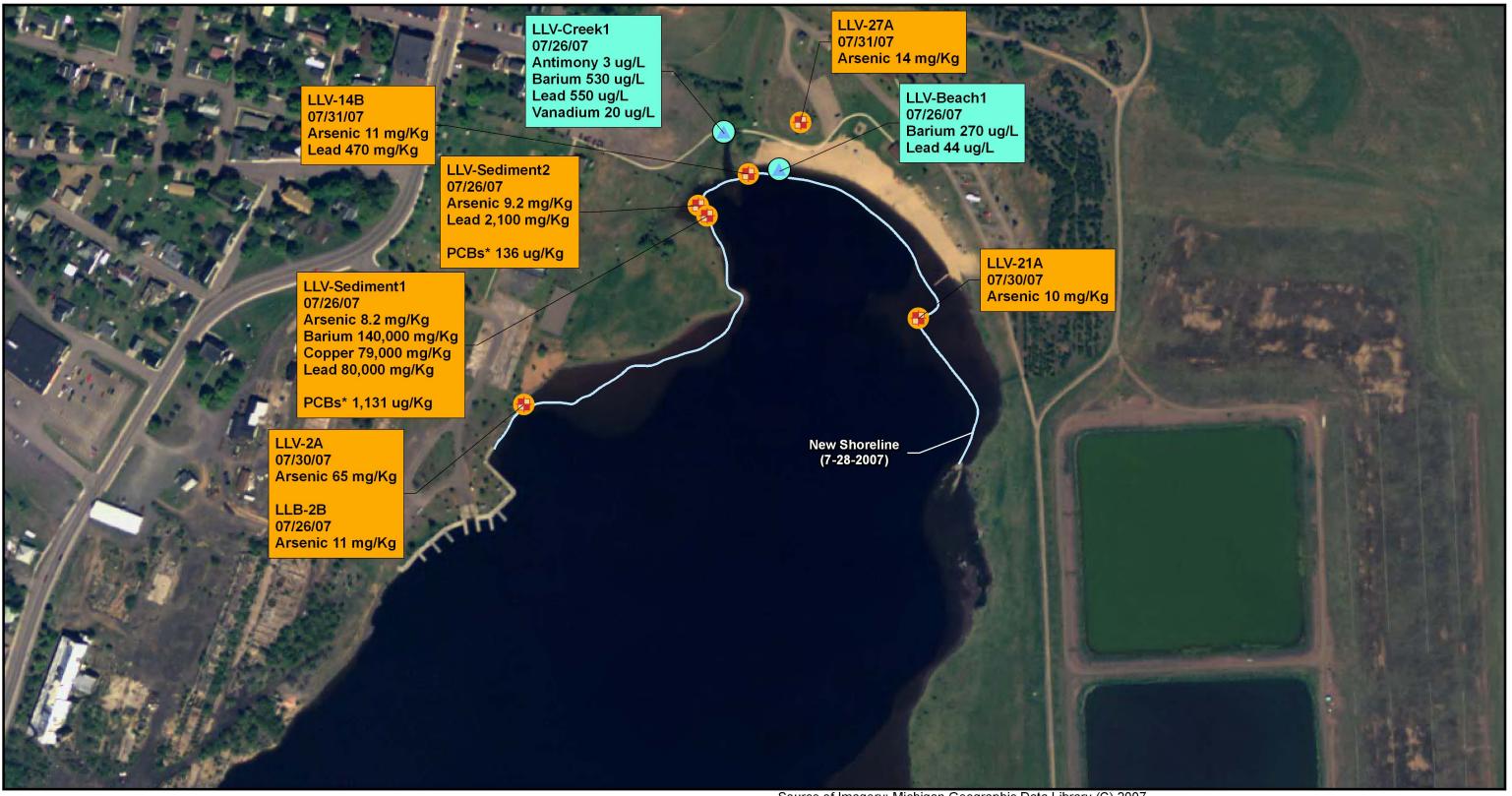
PAL P:\Current\WES0601\Torch Lake\GIS\MAPS\Lake_Linden_Final.MXD

Prepared for: U.S. EPA REGION V

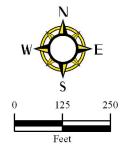
Contract No: EP-S5-06-04

TDD No.: S05-0001-0707-021 DCN: 274-2A-ABDT

Date of Photography: 06/21/2005


WASTION .

Prepared by:
WESTON SOLUTIONS, INC.
2501 Jolly Road, Suite 100
Okemos, MI


Attachment E-2

SAMPLING LOCATIONS LAKE LINDEN - ER LAKE LINDEN, HOUGHTON CO., MI

September 2007 Scale: 1"= 150

PAL P:\Current\WES0601\Torch Lake\GIS\MAPS\Samp_Res_Final.MXD

Soil Sample Exceeds Part 201 RDCC

Water Sample Exceeds Applicable Part 201 Criteria

Shoreline (7-28-2007)

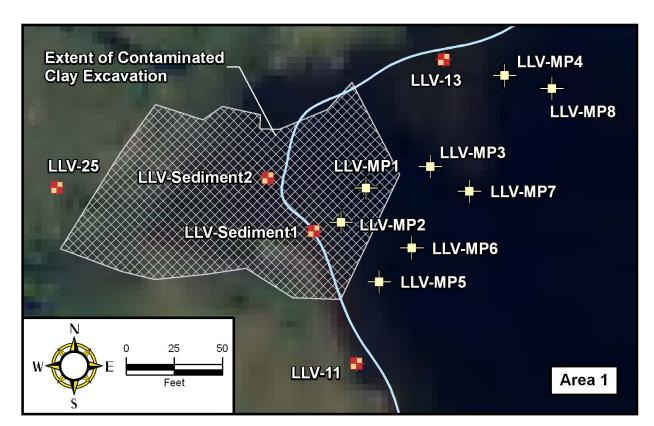
Note: PCBs* have been included on this figure; however, concentrations do not exceed Part 201 RDCC.

PCB - Polychlorinated Biphenyl

RDCC - Residential Direct Contact Criteria mg/Kg - milligrams per kilogram; mg/L - milligrams per liter

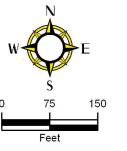
Source of Imagery: Michigan Geographic Data Library (C) 2007 Date of Photography: 06/21/2005

Prepared for: **U.S. EPA REGION V** Contract No: EP-S5-06-04


TDD No.: S05-0001-0707-021 DCN: 274-2A-ABDT

WESTERN SOLUTIONS

Prepared by: WESTON SOLUTIONS, INC. 2501 Jolly Road, Suite 100 Okemos, MI Attachment E-3


CRITERIA EXCEEDANCE MAP LAKE LINDEN - ER LAKE LINDEN, HOUGHTON CO., MI

August 2, 2007 Scale: 1"= 250'

Mud Puppy Sampling Locations

Soil Sampling Location

△ Water Sampling Location

Excavation

Shoreline (7-28-2007)

Source of Imagery: Michigan Geographic Data Library (C) 2007 Date of Photograph: 06/21/2005

Attachment E-4

Prepared for:
U.S. EPA REGION V
Contract No: EP-S5-06-04

TDD No.: S05-0001-0707-021 DCN: 274-2A-ABDT Prepared by:
WESTON SOLUTIONS, INC.
2501 Jolly Road, Suite 100
Okemos, MI

WESTEN

EXTENT OF CONTAMINATED CLAY AND ARSENIC SOILS EXCAVATIONS LAKE LINDEN - ER LAKE LINDEN, HOUGHTON CO., MI

September 2007 Scale: 1"= 150'; 1"=50'

PAL P:\Current\WES0601\Torch Lake\GIS\MAPS\Excavations Final.MXD